Show simple item record

dc.contributor.authorConnors, Martin
dc.contributor.authorRussell, Christopher T.
dc.contributor.authorDonovan, Eric F.
dc.contributor.authorAngelopoulos, Vassilis
dc.contributor.authorVoronkov, Igor
dc.contributor.authorMende, Stephen B.
dc.contributor.authorGlassmeier, Karl-Heinz
dc.contributor.authorHayashi, Kanji
dc.contributor.authorSpanswick, Emma
dc.contributor.authorMcFadden, James
dc.descriptionPoster SM23A-1188 at AGU Fall Meeting 2007. Updated version of a poster from STAMMS-2, presented in September.en
dc.description.abstractOver the past several years, intensive efforts have resulted in a significant improvement in the ground instrumentation for auroral studies in North America. A major part of this is due to the THEMIS ground program, both in the U.S. and in Canada. The THEMIS Ground-Based Observatory network has fielded 10 additional magnetometers in Canada and Alaska. Further THEMIS magnetometers are part of the GEONS outreach effort, found in the continental U.S. and Alaska. Athabasca University initiatives and collaborations have made yet further magnetometer data available, most notably from the new AUTUMN network of instruments in central Alberta, and others in Quebec. Several stations of the University of Tokyo STEP network remain operational, and some have been upgraded. There is finally a dense enough set of magnetic data that techniques based on forward modeling, and most relevant to the opportunity afforded by THEMIS, Automated Regional Modeling (ARM), can be reliably used. These techniques specify where net field-aligned current (FAC) and ionospheric electric current flow are located. In some cases the Pedersen system can also be included based on data. Even when it is not, it can be considered collocated with electrojet locations given by ARM. The extension into space of the FAC (net or Pedersen) allows comparison with the perturbations observed at THEMIS. We present results from an event on March 13, 2007, during which THEMIS in its early orbital configuration was magnetically conjugate to central North America, clear weather prevailed, and a substorm took place whose perturbations were ideally suited for inversion using ARM. At about 5 UT, activations were detected from the ground with magnetic perturbations also detected from THEMIS. The ground perturbations are well represented by a three-dimensional substorm current wedge (SCW) system, and perturbations in space indicate radial propagation at a time when the electrojet expanded poleward. Little longitudinal propagation of the SCW is suggested by the ground data.en
dc.description.sponsorshipCanada Research Chairs Canada Foundation for Innovation NSERC Athabasca Universityen
dc.format.extent1295723 bytes
dc.titleTime Evolution of the Substorm Current Wedge from Ground and Space-based Magnetic Fieldsen

Files in this item


This item appears in the following Collection(s)

Show simple item record

AU logo
Athabasca University Library & Scholarly Resources
Phone: (800) 788-9041 ext 6254 | Email:
Fax: (780) 675-6477 | Hours: Monday-Friday 8:30am - 4:30pm (MT) | Privacy
Focused on the future of learning.