Interpreting Single Particle Tracking Data with a Correlated Random Walk and a first-passage time algorithm

Gustavo Carrero

Centre for Science, Faculty of Science and Technology Athabasca University

July 18, 2010

Acknowledgements

 Vishaal Rajani (University of Alberta)

 Christopher Cairo (University of Alberta)

 Gerda de Vries (University of Alberta)

Athabasca University Research Incentive Grant (AU-RIG)

A D

Outline

Introduction

Correlated Random Walk Model

Variance First-Passage Time

Conclusions

/⊒ > < ∃ >

э

э

Single Particle Tracking

- Single Particle Tracking is an experimental technique used to address the following general question: How do individual biomolecules move within the cell?
- Individual particles are labeled with an optical bead or a fluorescent tag, and observed with video microscopy.

Data from SPT experiments is obtained as N + 1 position coordinates:

$$p_0 = (x_0, y_0), p_1 = (x_1, y_1), \vdots \vdots \\ p_N = (x_N, y_N).$$

Mean Square Displacement and the Diffusion Coefficient

- ► A common measure used to characterize the movement of particles is the diffusion coefficient, *D*.
- D is estimated from Mean Square Displacement (MSD), a quantity that describes the average of the squared displacements of a particle's trajectory.

- MSD at time *t*, is defined by $\rho(t) = \langle (r(t) r(0))^2 \rangle$.
- In two dimensions, $\rho(t) \approx 4Dt$.

Mean Square Displacement and the Diffusion Coefficient

LFA-1 (Leukocyte function-associated antigen 1)

- Integrin T-cell adhesion receptor allows T-cells to adhere to endothelial cells by binding to ICAM-1 (intercellular adhesion molecule) on antigen-presenting cells (endothelial cells).
- LFA-1 facilitates transmigration of leukocytes across vascular endothelia in processes such as extravasation and the inflammatory response.

Macroheterogeneity Observed in LFA-1

▲ 同 ▶ → 三 ▶

э

Macroheterogeneity – Microheterogeneity

・ (日本)

э

э

Some Questions

- What is the mechanism of movement of LFA-1 proteins?
- Is there a common mechanism that governs the whole population or multiple movement mechanisms?
- Is there movement heterogeneity within the population (macroheterogeneity) and/or within individual trajectories (microheterogeneity)?

Our Approach

Movement tracks are also analyzed in ecology, to understand the movement of animals.

- Can ecological models be used to provide information about SPT data?
- Move lengths and turning angles are often used in Ecology. What can length and turning angle distributions tell us about SPT movement tracks?
- How can we use ecological tools to tell us more about both macro and micro heterogeneity?

Kareiva et al., 1983.

Outline

Introduction

Correlated Random Walk Model

Variance First-Passage Time

Conclusions

- ∢ ≣ ▶

э

э

Turning Angles and Step Lengths

Angle and Length Distributions

Are these distributions alone enough to describe the observed LFA-1 trajectories?

Correlated Random Walk

- A random walk in which the directions of subsequent moves are correlated.
- Data is measured in terms of move lengths and turning angle probabilities.
- Conclusions are derived from analyzing collective distributions of data.

Can the movement mechanism of the LFA-1 protein be described by the length and turning angle distributions?

Correlated Random Walk: The Patlak Model

The model is given by the partial differential equation:

$$\frac{\partial u}{\partial t} = \frac{1}{n} \nabla \cdot \left[\frac{1 + \psi \left(2\frac{m_1^2}{m_2} - 1 \right)}{1 - \psi} \nabla \left(\frac{m_2}{2\tau} u \right) - \frac{\psi m_1^3}{\tau m_2 \left(1 - \psi \right)} \nabla \left(\frac{m_2}{m_1} \right) u \right]$$

- m_1 = average move length
- m_2 = average squared move length
 - au = average move duration
- ψ_{-} = average of the cosines of turning angles

Correlated Random Walk: The Patlak Model

This model gives rise to a theoretical formulation for MSD, called Net Squared Displacement:

$$\overline{R_n^2} = nm_2 + 2m_1^2 \left[\frac{(\psi - \psi^2 - s^2)n - \psi}{(1 - \psi)^2 + s^2} + \frac{2s^2 + (\psi + s^2)^{\frac{n+1}{2}}}{((1 - \psi)^2 + s^2)^2} \gamma \right]$$

$$\gamma = ((1 - \psi)^2 - s^2) \cos((n+1)\alpha) - 2s(1 - \psi) \sin((n+1)\alpha)$$

where m_1, m_2, ψ and s are calculated from data as

$$m_1 = \frac{1}{k} \sum_{i=1}^k \ell_i$$

$$m_2 = \frac{1}{k} \sum_{i=1}^k \ell_i^2$$

$$\psi = \frac{1}{k} \sum_{i=1}^k \cos(\theta_i)$$

$$s = \frac{1}{k} \sum_{i=1}^k \sin(\theta_i)$$

Testing the CRW with a Bootstrapping Procedure

- The MSDs of the pseudotrajectories (blue) surround the theoretical Net Squared Displacement (red) of the experimental data.
- They do not encompass the MSD of the experimental data (black).

Testing the CRW for Individual Trajectories

Out of 75 experimental trajectories, only 10 passed the bootstrapping procedure.

What about the rest?

Anomalous Diffusion

Lateral transport modes on the cell surface. (A) Transient confinement by obstacle clusters (B) or by the cytoskelaton, (C) directed motion, and (D) free random diffusion.

www-cellbio.med.unc.edu

- (A) Transient Confinement Zones due to obstacles
- (B) Transient Confinement Zones due to cytoskeleton binding
- (C) Directed Motion
- (D) Random Brownian Motion

Modeling Transient Confinement

- ► At each step of a CRW, decide whether the particle should become confined with probability P - in
- If confined, decide whether the particle should leave the confinement zone with probability P - out

Transient Confinement and the Patlak Model

< 1 →

Outline

Introduction

Correlated Random Walk Model

Variance First-Passage Time

Conclusions

Gustavo Carrero Single Particle Tracking

/⊒ > < ∃ >

э

э

First-Passage Time and its Distribution

FPT (First Passage Time): number of steps that a particle or individual takes in a circle of radius *r* centered on each step of the trajectory.

First-Passage Time and its Distribution

FPT (First Passage Time): number of steps that a particle or individual takes in a circle of radius *r* centered on each step of the trajectory.

Distribution given by the FPT for r

Variance First-Passage Time

S(r)(Variance First-Passage Time): Variance of the distribution given by the FPT for r. It is a measure of the amount of heterogeneity at the spatial scale r.

How does variance FPT look for different transient confinement parameters?

(A) $p_i = 1$ and $p_o = 0$; 50nm, 100nm, 200nm, 500nm, 1000nm

(B) $r_c = 50nm;$ $p_i = 0, 0.2, 0.4, 0.8, 1$ $p_o = 0.1$

(C) $r_c = 50nm;$ $p_o = 0.05, 0.2, 0.4, 0.8, 1$ $p_i = 0.9$

(日)

Application to LFA-1

æ

Э.

Looking at Macroheterogeneity

< 4 → < 三

Classifying Population Structure

- Changes in population structure after treatment of PMA
- For a particular label (TS1/18), PMA activates the cell: increases mobility of LFA-1 proteins

Gustavo Carrero Single Particle Tracking

Distribution of Peaks in Variance First-Passage Time

 The areas of concentrated movement change after treatment of PMA

< 台

Detecting Cluster Sizes

Combining MEM148 Antigen with PMA shows concentrated diffusion within ≤ 50nm ⇒ clustering?

LFA-1 Receptor Clustering

 Experimental evidence for LFA-1 clusters on activated cells is limited

Outline

Introduction

Correlated Random Walk Model

Variance First-Passage Time

Conclusions

Gustavo Carrero Single Particle Tracking

/⊒ > < ∃ >

э

э

Conclusions

- Ecological approaches can provide insights into the movement mechanism of individual proteins.
- Both the CRW model and variance FPT provide some ability to monitor and filter macroheterogeneity.
- Variance FPT is a useful method to detect microheterogeneity and suggests receptor clustering.

THANKS YOU!

Gustavo Carrero Single Particle Tracking

æ