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Single Particle Tracking

I Single Particle Tracking is an experimental technique used to
address the following general question:
How do individual biomolecules move within the cell?

I Individual particles are labeled with an optical bead or a
fluorescent tag, and observed with video microscopy.

Data from SPT experiments is obtained as N + 1 position
coordinates:

(x0, y0)

(x1, y1)

(x2, y2)

(x3, y3)

(x4, y4)

(x5, y5)

p0 = (x0, y0),
p1 = (x1, y1),
...

...
pN = (xN , yN).

Gustavo Carrero Single Particle Tracking



Introduction
Correlated Random Walk Model

Variance First-Passage Time
Conclusions

Mean Square Displacement and the Diffusion Coefficient

I A common measure used to characterize the movement of particles
is the diffusion coefficient, D.

I D is estimated from Mean Square Displacement (MSD), a quantity
that describes the average of the squared displacements of a
particle’s trajectory.

I MSD at time t, is defined by
ρ(t) = 〈(r(t)− r(0))2〉.

I In two dimensions,
ρ(t) ≈ 4Dt.
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Mean Square Displacement and the Diffusion Coefficient
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LFA-1 (Leukocyte function-associated antigen 1)
I Integrin - T-cell adhesion receptor - allows T-cells to adhere to

endothelial cells by binding to ICAM-1 (intercellular adhesion
molecule) on antigen-presenting cells (endothelial cells).

I LFA-1 facilitates transmigration of leukocytes across vascular
endothelia in processes such as extravasation and the
inflammatory response.

Receptor affinity ⇐⇒ lateral diffusion
How does the protein move along the membrane?

Gustavo Carrero Single Particle Tracking



Introduction
Correlated Random Walk Model

Variance First-Passage Time
Conclusions

Macroheterogeneity Observed in LFA-1

Cairo et al., 2006
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Macroheterogeneity – Microheterogeneity
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Some Questions

I What is the mechanism of movement of LFA-1 proteins?

I Is there a common mechanism that governs the whole
population or multiple movement mechanisms?

I Is there movement heterogeneity within the population
(macroheterogeneity) and/or within individual trajectories
(microheterogeneity)?
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Our Approach
Movement tracks are also analyzed in
ecology, to understand the movement
of animals.

I Can ecological models be used to
provide information about SPT
data?

I Move lengths and turning angles
are often used in Ecology. What
can length and turning angle
distributions tell us about SPT
movement tracks?

I How can we use ecological tools
to tell us more about both macro
and micro heterogeneity?

Kareiva et al., 1983.
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Turning Angles and Step Lengths

`0
`1

`2 `3

`4
(x0, y0)

(x1, y1)

(x2, y2)

(x3, y3)

(x4, y4)

(x5, y5)

`i−1

`i

θi
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Angle and Length Distributions

Are these distributions alone enough to describe the observed
LFA-1 trajectories?
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Correlated Random Walk

I A random walk in which the directions of subsequent moves
are correlated.

I Data is measured in terms of move lengths and turning angle
probabilities.

I Conclusions are derived from analyzing collective distributions
of data.

Can the movement mechanism of the LFA-1 protein be described
by the length and turning angle distributions?
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Correlated Random Walk: The Patlak Model

The model is given by the partial differential equation:

∂u

∂t
=

1

n
∇·

1 + ψ
(
2

m2
1

m2
− 1

)
1− ψ

∇
(m2

2τ
u
)
− ψm3

1

τm2 (1− ψ)
∇

(
m2

m1

)
u


m1 = average move length
m2 = average squared move length
τ = average move duration
ψ = average of the cosines of turning angles
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Correlated Random Walk: The Patlak Model

This model gives rise to a theoretical formulation for MSD, called
Net Squared Displacement:

R2
n = nm2 + 2m2

1

[
(ψ − ψ2 − s2)n − ψ

(1− ψ)2 + s2
+

2s2 + (ψ + s2)
n+1
2

((1− ψ)2 + s2)2
γ

]

γ = ((1− ψ)2 − s2) cos((n + 1)α)− 2s(1− ψ) sin((n + 1)α)

where m1,m2, ψ and s are calculated from data as

m1 = 1
k

∑k
i=1 `i

m2 = 1
k

∑k
i=1 `

2
i

ψ = 1
k

∑k
i=1 cos (θi )

s = 1
k

∑k
i=1 sin (θi )
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Testing the CRW with a Bootstrapping Procedure

I The MSDs of the pseudotrajectories (blue) surround the
theoretical Net Squared Displacement (red) of the
experimental data.

I They do not encompass the MSD of the experimental data
(black).
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Testing the CRW for Individual Trajectories

Out of 75 experimental trajectories, only 10 passed the
bootstrapping procedure.

What about the rest?
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Anomalous Diffusion

www-cellbio.med.unc.edu

(A) Transient Confinement
Zones due to obstacles

(B) Transient Confinement
Zones due to cytoskeleton
binding

(C) Directed Motion

(D) Random Brownian Motion
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Modeling Transient Confinement

I At each step of a CRW, decide whether the particle should
become confined with probability P − in

I If confined, decide whether the particle should leave the
confinement zone with probability P − out

P-out

P-in
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Transient Confinement and the Patlak Model
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First-Passage Time and its Distribution
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3
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0
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FPT (First Passage Time):
number of steps that a particle
or individual takes in a circle of
radius r centered on each step

of the trajectory.

Distribution given by the FPT
for r
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First-Passage Time and its Distribution
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Variance First-Passage Time

S(r)(Variance First-Passage Time): Variance of the distribution
given by the FPT for r . It is a measure of the amount of
heterogeneity at the spatial scale r .
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How does variance FPT look for different transient
confinement parameters?
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Application to LFA-1
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Looking at Macroheterogeneity
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Classifying Population Structure
I Changes in population structure after treatment of PMA
I For a particular label (TS1/18), PMA activates the cell:

increases mobility of LFA-1 proteins
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Distribution of Peaks in Variance First-Passage Time

I The areas of concentrated movement change after treatment
of PMA
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Detecting Cluster Sizes
I Combining MEM148 Antigen with PMA shows concentrated

diffusion within ≤ 50nm ⇒ clustering?
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LFA-1 Receptor Clustering

Cambi et al., 2006

I Experimental evidence for LFA-1 clusters on activated cells is
limited
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Conclusions

I Ecological approaches can provide insights into the movement
mechanism of individual proteins.

I Both the CRW model and variance FPT provide some ability
to monitor and filter macroheterogeneity.

I Variance FPT is a useful method to detect microheterogeneity
and suggests receptor clustering.
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THANKS YOU!
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