Describing the motion of cellular proteins at individual and population levels

Gustavo Carrero
Athabasca University

MITACS Annual Conference
June 2, 2009
Outline

I. Experimental population data & experimental individual data at the cellular level: Fluorescence Recovery After Photobleaching (FRAP) data and Single Particle Tracking (SPT) data

III. Individual-based modeling example: Testing a correlated random walk for cellular receptors.
Fluorescence Recovery After Photobleaching (FRAP) experiments: protein population data

The data are used to quantify the mobility by determining an effective diffusion coefficient D_{eff} via a diffusion approximation of a random walk

\[\frac{\partial}{\partial t} u(x,t) = D_{\text{eff}} \frac{\partial^2 u(x,t)}{\partial x^2} \]

\[R(t) = \int_{\Lambda} u(x,t) \, dx \]
Single Particle Tracking (SPT) experiments: individual protein data

MSD is related to the diffusion coefficient via a random walk approach

\[\rho(t) = 4Dt \]

MSD:

\[\rho(t) = \langle (r(t) - r(0))^2 \rangle \]

\[r(t) = (x(t), y(t)) \]; position of the particle at time \(t \)

\(\langle \cdot \rangle \): Averaging over time or over an ensemble of similar particles
QUESTIONS

1) Using population data, can we describe the individual mechanism driving the dynamics of the population?
\[\text{Pop. data} \rightarrow \text{Ind. mech.} \rightarrow \text{Pop. dyn.} \]

2) Using individual data, can we describe the dynamics of the whole the population?
\[\text{Ind. data} \rightarrow \text{Ind. mech.} \rightarrow \text{Pop. dyn.} \]

ANSWER

Yes and No ?? … Let us illustrate this non-contradictory answer with a couple of examples:
I. Population data of splicing factors
II. Individual data of membrane receptors
Population data of splicing factors

Fluorescence microscopy image of SC-35 distribution in an Indian Muntjac Fibroblast cell nucleus

Splicing factor compartments (speckles)

Question:
What is the mechanism responsible for the formation of speckles?

Fluorescence Microscopy experiments (FRAP) have shown that:

1. SFs are in continuous flux between speckles and nucleoplasm.
2. SFs move randomly within the nucleus at a rate two orders of magnitude lower than expected.
Self-organization of splicing factors

1. **Self-organization** is responsible for the formation of speckles (modulated by phosphorylation and dephosphorylation).

2. The existence of an **underlying nuclear scaffold** (nuclear matrix) plays a major role in the organization of SFs (it slows down the mobility of SFs via binding).

Full Schematic Model

A population model for self-organization of SFs

\[
\begin{align*}
\frac{\partial v}{\partial t} &= D \frac{\partial^2 v}{\partial^2 x} - \delta v + \rho u \\
\frac{\partial u}{\partial t} &= (\text{motion and self-interaction term}) + \delta v - \rho u
\end{align*}
\]

\(v(x,t)\) : phosphorylated splicing factors density \\
\(u(x,t)\) : unphosphorylated splicing factors density \\
\(\delta\) : dephosphorylation rate \\
\(\rho\) : phosphorylation rate \\
\(D = (1 - k) D_b\) : effective diffusion coefficient of SFs \\
\(k\) : proportion of SFs bound to the nuclear scaffold \\
\(D_b\) : diffusion coefficient describing the Brownian motion of SFs.
Motion and Self-Interaction Term
(for unphosphorylated SFs)

Random Walk Analysis

\[L(x,t) \quad R(x,t) \]

\[x - \lambda \quad N(x,t) \quad x + \lambda \]

Diffusion Approximation

\[\frac{\partial u}{\partial t} = \frac{\partial^2 (\mu u)}{\partial x^2} \]

Diffusion Approximation

\[\frac{\partial u}{\partial t} = \frac{\partial^2 (\mu u)}{\partial x^2} - \frac{\partial (\beta u)}{\partial x} \]

Fokker-Planck Equation

\[\mu = \frac{\lambda^2}{2\tau} (R + L) = D(1 - N) \quad [\text{Motility}] \]

\[\beta = \frac{\lambda}{\tau} (R - L) \quad [\text{Bias}] \]

Task: To find the motility \(\mu = D(1 - N) \)
(i.e., to find the probability \(N(x,t) \)):
Motion and Self-Interaction Term

Developing the probability \(N(x,t) \):

\[
N(x,t) = \frac{\kappa}{\omega} \int_{-\infty}^{\infty} H(s) u(x+s,t) \, ds
\]

\(N(x,t) \) is proportional to the average density of SFs bound to the underlying structure.

\(\omega \): critical density dictated by space limitations

\(\kappa \): aggregative sensitivity = \(a \, k \), \(a \) : affinity of the self-interaction

\(k \): proportion of bound SFs

\[
H(s) = \begin{cases}
\frac{1}{2 \sigma} & \text{for } \mid x \mid \leq \sigma \\
0 & \text{for } \mid x \mid > \sigma
\end{cases}
\]

(Kernel function) \(\int_{-\infty}^{\infty} H(s) \, ds = 1 \)

\(\sigma \): range of influence of the self-interaction
Motion and Self-Interaction Term

\[N(x,t) = \frac{\kappa}{\omega} \int_{-\infty}^{\infty} H(s) u(x + s, t) \, ds \]

Task: To find the motility
\[\mu = D \left(1 - N\right) \]

Substituting the Taylor expansion
\[u(x+s,t) = u(x,t) + \frac{\partial u}{\partial x} s + \frac{\partial^2 u}{\partial x^2} \frac{s^2}{2} + \frac{\partial^3 u}{\partial x^3} \frac{s^3}{6} + O(s^4) \]
in \(N(x,t) \), calculating the integral, and neglecting 4th order and higher terms with respect to \(\sigma \), we obtain the motility

\[\mu = D - D \frac{\kappa u}{\omega} - D \frac{\kappa \sigma^2}{6 \omega} \frac{\partial^2 u}{\partial x^2} \]

[Motility]

Plug in \(\mu \)

\[\frac{\partial u}{\partial t} = \frac{\partial^2 (\mu u)}{\partial x^2} \]

[Diffusion Approximation]
Motion and Self-Interaction Term

Aggregation-Diffusion Equation

\[
\frac{\partial u}{\partial t} = \frac{\partial}{\partial x} \left[\left(D - 2D\kappa \frac{u}{\omega} \right) \frac{\partial u}{\partial x} \right] D - \frac{\partial^2}{\partial x^2} \left[\left(\frac{D \kappa \sigma^2}{6} \frac{u}{\omega} \right) \frac{\partial^2 u}{\partial x^2} \right]
\]

Aggregation-Reaction-Diffusion Equation

\[
\frac{\partial v}{\partial t} = D \frac{\partial^2 v}{\partial x^2} - \delta v + \rho u
\]

\[
\frac{\partial u}{\partial t} = \frac{\partial}{\partial x} \left[\left(D - 2D\kappa \frac{u}{\omega} \right) \frac{\partial u}{\partial x} \right] - \frac{\partial^2}{\partial x^2} \left[\left(\frac{D \kappa \sigma^2}{6} \frac{u}{\omega} \right) \frac{\partial^2 u}{\partial x^2} \right] + \delta v - \rho u
\]

The model describes the onset of the compartmentalization of splicing factors

Individual data of membrane receptors

Single Particle Tracking (SPT):
The study of a trajectory or a collection of single trajectories

Question:

1. Can we characterize the dynamics of the population with an individual trajectory?

2. Can we characterize the dynamics of the population with a collection of trajectories?

Cairo et al. (2006)
Mean Square Displacement (MSD) and Diffusion

MSD: \[\rho(t) = \langle (r(t) - r(0))^2 \rangle \]

\[r(t) = (x(t), y(t)) \] ; The position of the particle at time \(t \)

\[\langle \rangle : \text{Averaging over time or over an ensemble of similar particles} \]

The mean square displacement is related to the diffusion coefficient via

\[\rho(t) = 4Dt \]

Thus, an accurate estimation of this parameter requires an accurate MSD calculation.
Estimating the MSD for one trajectory

I. Considering one length for each time step “n”

\[
\begin{align*}
R_1^2 &= (x_1 - x_0)^2 + (y_1 - y_0)^2 = d^2(p_0, p_1) \\
R_2^2 &= (x_2 - x_0)^2 + (y_2 - y_0)^2 = d^2(p_0, p_2) \\
&\vdots \\
R_n^2 &= (x_n - x_0)^2 + (y_n - y_0)^2 = d^2(p_0, p_n)
\end{align*}
\]

MSD:

\[
\rho(t) \sim R_n^2
\]

\[
t = \tau n
\]

\[
\tau : \text{time step size}
\]
Estimating the MSD for one trajectory

I. Considering one length for each time step: Example
Estimating the MSD for one trajectory

II. Averaging lengths given by position pairs obtained with the time separation $n\tau$

(Qian et. al, 1991)

\[p_0 = (x_0, y_0) \]
\[p_1 = (x_1, y_1) \]
\[p_2 = (x_2, y_2) \]
\[p_3 = (x_3, y_3) \]

\[\overline{R_1}^2 = \frac{d_{11}^2 + d_{12}^2 + d_{13}^2}{3} \]
\[d_{11} = (x_1 - x_0)^2 + (y_1 - y_0)^2 \]
\[d_{12} = (x_2 - x_1)^2 + (y_2 - y_1)^2 \]
\[d_{13} = (x_3 - x_1)^2 + (y_3 - y_1)^2 \]

\[\overline{R_1}^2 = \frac{(x_1 - x_0)^2 + (x_2 - x_1)^2 + (x_3 - x_2)^2}{3} + \frac{(y_1 - y_0)^2 + (y_2 - y_1)^2 + (y_3 - y_2)^2}{3} \]

\[\overline{R_1}^2 = \rho_x (1\tau) + \rho_y (1\tau) \]

\[\overline{R_2}^2 = \frac{d_{21}^2 + d_{22}^2}{2} \]
\[d_{21} = (x_2 - x_0)^2 + (y_2 - y_0)^2 \]
\[d_{22} = (x_3 - x_1)^2 + (y_3 - y_1)^2 \]

\[\overline{R_2}^2 = \frac{(x_2 - x_0)^2 + (x_3 - x_1)^2}{2} + \frac{(y_2 - y_0)^2 + (y_3 - y_1)^2}{2} \]

\[\overline{R_2}^2 = \rho_x (2\tau) + \rho_y (2\tau) \]
Estimating the MSD for one trajectory

II. Averaging lengths given by position pairs obtained with the time separation $n\tau$
(Qian et. al, 1991)

For a general n: $R_n^{-2} = \rho_x(n\tau) + \rho_y(n\tau)$, where

$$
\rho_x(n\tau) = \sum_{i=0}^{N(n)} \frac{(x_{i+n} - x_i)^2}{N(n)+1}
$$

$$
\rho_y(n\tau) = \sum_{i=0}^{N(n)} \frac{(y_{i+n} - y_i)^2}{N(n)+1}
$$

and $N(n) = \text{(\# of position pairs obtained with the time separation } n\tau) - 1$

Note: It is practical to express $N(n)$ in terms of the \# of snapshots N_s: $N(n) + 1 = N_s - n$. Thus,

$$
\rho_x(n\tau) = \sum_{i=0}^{N_s-n-1} \frac{(x_{i+n} - x_i)^2}{N_s-n}
$$

$$
\rho_y(n\tau) = \sum_{i=0}^{N_s-n-1} \frac{(y_{i+n} - y_i)^2}{N_s-n}
$$

MSD:

$$
\rho(t) \sim R_n^{-2} = \rho_x(n\tau) + \rho_y(n\tau)
$$

$t = \tau n$

τ: time step size
Estimating the MSD for one trajectory

II. Averaging lengths given by position pairs obtained with the time separation $n\tau$: Example

Q: Is this diffusion coefficient representative of the whole population?

A: ??
Estimating the MSD for a collection of trajectories

I. Considering one length for each time step in each trajectory and then averaging them over the collection of trajectories:
 Example (10 trajectories of 4000 time steps)

\[
\langle R_n^2 \rangle = \sum_{j=1}^{k} \frac{R_{nj}^2}{k}; \quad k = \# \text{ of traj.}
\]

\[\rho(t) = 4Dt\]

\[t = \tau n\]

\[\tau : \text{time step size}\]
Estimating the MSD for a collection of trajectories

II. Averaging lengths for each time step in each trajectory and then averaging them over the collection of trajectories:
Example (10 trajectories of 4000 time steps)

\[\rho(t) \sim \left\langle R_n^2 \right\rangle \]

\[\left\langle R_n^2 \right\rangle = \sum_{j=1}^{k} \frac{R_{nj}^2}{k} ; k = \# \text{ of traj.} \]

\[t = \tau n \]
\[\tau : \text{time step size} \]
Estimating the MSD for a collection of trajectories

III. Considering one length for each time step in each trajectory and then averaging them over the collection of trajectories:
Example (50 trajectories of 4000 time steps)

\[\rho(t) = 4Dt \]

\[\langle R^2_n \rangle = \sum_{j=1}^{k} \frac{R_{nj}^2}{k} ; \quad k = \# \text{ of traj.} \]

\[t = \tau n \]

\(\tau \) : time step size
Estimating the MSD for a collection of trajectories

IV. Averaging lengths for each time step in each trajectory and then averaging them over the collection of trajectories:

Example (50 trajectories of 4000 time steps)

\[
\rho(t) = 4Dt
\]

\[
\langle R^2_n \rangle = \sum_{j=1}^{k} \frac{R_{nj}^2}{k} ; \ k = \# \text{ of traj.}
\]

\[t = \tau n \]

\[\tau : \text{time step size} \]
Questions

- Can we assume that the population of particles is diffusing? How do we test a random walk model?
- Can we use the MSD of each trajectory to statistically differentiate their behaviour?
Correlated Random Walk (CRW)

CRW: Movement sequences are described in terms of move lengths \((l_i) \) and turning angles \((\theta_i) \) distributions.

\[
\overline{R_n^2} = nm_2 + 2m_1^2 \left[\frac{(c-c^2-s^2)n-c}{(1-c)^2+s^2} + \frac{2s^2+(c+s^2)^{\frac{n+1}{2}}}{(1-c)^2+s^2} \right] \gamma
\]

\[
\gamma = \left[(1-c)^2-s^2\right] \cos((n+1)\alpha) - 2s(1-c) \sin((n+1)\alpha) ; \quad \alpha = \arctan\left(\frac{s}{c}\right)
\]

\[
m_1 = \frac{1}{k} \sum_{i=1}^{k} \ell_i ; \quad m_2 = \frac{1}{k} \sum_{i=1}^{k} \ell_i^2 ; \quad c = \frac{1}{k} \sum_{i=1}^{k} \cos \theta_i ; \quad s = \frac{1}{k} \sum_{i=1}^{k} \sin \theta_i
\]

Note: If the distribution of turning angles has a uniform density, then

\[
\overline{R_n^2} = nm_2
\]
CRW. Angle and Length Distributions

Main Question:

Is the movement of receptors driven by a CRW?
Testing the Data for Correlated Random Walk

H_0: The population of particles moves according to a CRW
H_1: CRW is rejected

Bootstrapping Steps (Kareiva et. al, 1983):

1. Calculate observed and expected MSD (from all the population)
2. Prepare the distributions of lengths and angles from experimental data (from all the population)
3. a. Using these distributions generate the same # of pseudotrajectories as experimental trajectories.
 b. Calculate and plot the MSD using these pseudotrajectories
 c. Repeat this procedure about 100 times.
4. For each time step truncate the five highest and lowest values for the MSD. This will create, for example, a 90% confidence interval.
5. If the observed MSD does not fall into the confidence interval the null hypothesis is rejected. Otherwise, it H_0 cannot be rejected.
Testing the Data for Correlated Random Walk

Observed and expected MSD for LFA-1 using CRW model

Mean Squared Displacement

Observed and expected MSD
Testing the Data for Correlated Random Walk

Each blue MSD curve is obtained from 75 pseudotrajectories generated from the angle and length distributions. There are 100 blue MSD curves.
Testing the Data for Correlated Random Walk

The observed MSD does not fall into the confidence interval

H_0 is rejected! CRW is rejected!
Question:

What is causing the receptors to disperse slower than expected from a CRW?

Possible answers:

- Existence of angle-length correlations?
- Existence of autocorrelations?
- The existence of two or more populations moving at different rates (possibly caused by cytoskeleton interaction)?
Acknowledgements

Hendzel’s Lab members, and Dr. Michael Hendzel, Cross Cancer Institute, UofA

Dr. Gerda de Vries,
Dept. of Math., UofA

Dr. Christopher Cairo,
Dept. of Chemistry, UofA

Vishaal Rajani,
M.Sc. Student, Dept. of Math, UofA

- A&PDF (Academic & Professional Development Fund) Award
- RIG (Research Incentive Grant)