#### Describing the motion of cellular proteins at individual and population levels





Gustavo Carrero Athabasca University





### Outline

- I. Experimental population data & experimental individual data at the cellular level: Fluorescence Recovery After Photobleaching (FRAP) data and Single Particle Tracking (SPT) data
- II. Population-based modeling example: Modeling self-organization of nuclear proteins.
- III. Individual-based modeling example: Testing a correlated random walk for cellular receptors.

## Fluorescence Recovery After Photobleaching (FRAP) experiments: protein population data



FRAP experiment of SC-35 in an Indian Muntjac Fibroblast cell nucleus

The data are used to quantify the mobility by determining an effective diffusion coefficient  $D_{eff}$  via a diffusion approximation of a random walk

$$\frac{\partial}{\partial t}u(x,t) = D_{eff} \frac{\partial^2 u(x,t)}{\partial x^2}$$
$$R(t) = \int_{\Lambda} u(x,t) dx$$



## Single Particle Tracking (SPT) experiments: individual protein data





MSD is related to the diffusion coefficient via a random walk approach

$$\rho(t) = 4Dt$$

MSD: 
$$\rho(t) = \langle (r(t) - r(0))^2 \rangle$$

r(t) = (x(t), y(t)); position of the particle at time t

 $\rangle$ : Averaging over time or over an ensemble of similar particles

#### QUESTIONS

- 1) Using population data, can we describe the individual mechanism driving the dynamics of the population? *Pop. data*  $\rightarrow$  *Ind. mech.*  $\rightarrow$  *Pop. dyn.*
- 2) Using individual data, can we describe the dynamics of the whole the population? Ind. data  $\rightarrow$  Ind. mech.  $\rightarrow$  Pop. dyn.

#### ANSWER

Yes and No ?? ... Let us illustrate this non-contradictory answer with a couple of examples: I.Population data of splicing factors II.Individual data of membrane receptors

#### Population data of splicing factors



Splicing factor compartments (speckles)

Question: What is the mechanism responsible for the formation of speckles?

Fluorescence microscopy image of SC-35 distribution in an Indian Muntjac Fibroblast cell nucleus



#### Fluorescence Microscopy experiments (FRAP) have shown that:

- 1. SFs are in continuous flux between speckles and nucleoplasm.
- 2. SFs move randomly within the nucleus at a rate two orders of magnitude lower than expected.

#### Self-organization of splicing factors

1. <u>Self-organization</u> is responsible for the formation of speckles (modulated by phosphorylation and dephosphorylation)

2. The existence of an **underlying nuclear scaffold** (nuclear matrix) plays a major role in the organization of SFs (it slows down the mobility of SFs via binding)



Full Schematic Model

(*T. Misteli, J. Cell Sci.*, 113: 1841-1849, 2000)

(G. Carrero, M.J. Hendzel, G. de Vries, J. Theor. Biol., 239: 298-312, 2006)

## A population model for self-organization of SFs



- v(x, t): phosphorylated splicing factors density
- u(x, t) : unphosphorylated splicing factors density
- $\delta$  : dephosphorylation rate
- $\rho$ : phosphorylation rate

 $D = (1-k)D_b$ : effective diffusion coefficient of SFs k: proportion of SFs bound to the nuclear scaffold  $D_b$ : diffusion coefficient describing the Brownian motion of SFs.

#### Motion and Self-Interaction Term (for unphosphorylated SFs)



Task: To find the motility  $\mu = D(1-N)$ (i.e., to find the probability N(x,t)):

#### Motion and Self-Interaction Term

**Developing the probability** *N*(*x*,*t*):

$$N(x,t) = \frac{\kappa}{\omega} \int_{-\infty}^{\infty} H(s) u(x+s,t) ds$$

N(x,t) is proportional to the average density of SFs bound to the underlying structure.

- $\omega$ : critical density dictated by space limitations
- $\kappa$ : aggregative sensitivity =  $\alpha k$ ,  $\alpha$ : affinity of the self-interaction

*k* : proportion of bound SFs

$$H(s) = \begin{cases} \frac{1}{2\sigma} & \text{for} & |x| \le \sigma \\ 0 & \text{for} & |x| > \sigma \end{cases} \text{ (Kernel function)} \qquad \int_{-\infty}^{\infty} H(s) \, ds = 1 \end{cases}$$

 $\sigma$ : range of influence of the self-interaction

#### Motion and Self-Interaction Term

$$N(x,t) = \frac{\kappa}{\omega} \int_{-\infty}^{\infty} H(s) u(x+s,t) ds$$

Task: To find the motility

$$\mu = D\left(1 - N\right)$$

Substituting the Taylor expansion  $u(x+s,t) = u(x,t) + \frac{\partial u}{\partial x}s + \frac{\partial^2 u}{\partial x^2}\frac{s^2}{2} + \frac{\partial^3 u}{\partial x^3}\frac{s^3}{6} + O(s^4)$ in N(x,t), calculating the integral, and neglecting 4th order and higher terms with

respect to  $\sigma$ , we obtain the motility

$$\mu = D - D \frac{\kappa u}{\omega} - D \frac{\kappa \sigma^2}{6 \omega} \frac{\partial^2 u}{\partial x^2}$$
 [Motility]  
Plug in  $\mu$   
$$\frac{\partial u}{\partial t} = \frac{\partial^2 (\mu u)}{\partial x^2}$$
 [Diffusion Approximation]

#### Motion and Self-Interaction Term

**Aggregation-Diffusion Equation** 

$$\frac{\partial u}{\partial t} = \frac{\partial}{\partial x} \left[ \left( D - 2D\kappa \frac{u}{\omega} \right) \frac{\partial u}{\partial x} \right] D - \frac{\partial^2}{\partial x^2} \left[ \left( \frac{D\kappa \sigma^2}{6} \frac{u}{\omega} \right) \frac{\partial^2 u}{\partial x^2} \right]$$

#### **Aggregation-Reaction-Diffusion Equation**

$$\frac{\partial v}{\partial t} = D \frac{\partial^2 v}{\partial^2 x} -\delta v + \rho u$$
$$\frac{\partial u}{\partial t} = \frac{\partial}{\partial x} \left[ \left( D - 2D\kappa \frac{u}{\omega} \right) \frac{\partial u}{\partial x} \right] - \frac{\partial^2}{\partial x^2} \left[ \left( \frac{D\kappa \sigma^2}{6} \frac{u}{\omega} \right) \frac{\partial^2 u}{\partial x^2} \right] + \delta v - \rho u$$

The model describes the onset of the compartmentalization of splicing factors (*G. Carrero, M.J. Hendzel, G. de Vries, J. Theor. Biol.*, 239: 298-312, 2006)

#### Individual data of membrane receptors



#### Single Particle Tracking (SPT):

The study of a trajectory or a collection of single trajectories

#### **Question:**

1. Can we characterize the dynamics of the population with an individual trajectory?

2. Can we characterize the dynamics of the population with a collection of trajectories?

Cairo et al. (2006)

### Mean Square Displacement (MSD) and Diffusion

MSD: 
$$\rho(t) = \langle (r(t) - r(0))^2 \rangle$$

r(t) = (x(t), y(t)); The position of the particle at time t

: Averaging over time or over an ensemble of similar particles

The mean square displacement is related to the diffusion coefficient via

$$\rho(t) = 4Dt$$

Thus, an accurate estimation of this parameter requires an accurate MSD calculation.

I. Considering one length for each time step "n"



MSD:  

$$\rho(t) \sim R_n^2$$

 $t = \tau n$  $\tau : \text{time step size}$ 

#### I. Considering one length for each time step: Example



### **II.** Averaging lengths given by position pairs obtained with the time separation $n\tau$ (Qian et. al, 1991)



### **II.** Averaging lengths given by position pairs obtained with the time separation $n\tau$ (Qian et. al, 1991)

For a general n:  $\overline{R_n}^2 = \rho_x(n\tau) + \rho_y(n\tau)$ , where  $\rho_x(n\tau) = \sum_{i=0}^{N(n)} \frac{(x_{i+n}-x_i)^2}{N(n)+1}$  $\rho_y(n\tau) = \sum_{i=0}^{N(n)} \frac{(y_{i+n}-y_i)^2}{N(n)+1}$ 

and  $N(n) = (\# \text{ of position pairs obtained with the time separation } n\tau) - 1$ 

<u>Note</u>: It is practical to express N(n) in terms of the # of snapshots  $N_s$  :  $N(n) + 1 = N_s - n$ . Thus,

$$\rho_x(n\tau) = \sum_{i=0}^{N_s - n - 1} \frac{(x_{i+n} - x_i)^2}{N_s - n}$$

$$\rho_y(n\tau) = \sum_{i=0}^{N_s - n - 1} \frac{(y_{i+n} - y_i)^2}{N_s - n}$$

$$t = \tau n$$

$$\tau : \text{ time step size}$$

### II. Averaging lengths given by position pairs obtained with the time separation $n\tau$ : Example



Q: Is this diffusion coefficient representative of the whole population?

I. Considering one length for each time step in each trajectory and then averaging them over the collection of trajectories: Example (10 trajectories of 4000 time steps)



II. Averaging lengths for each time step in each trajectory and then averaging them over the collection of trajectories: Example (10 trajectories of 4000 time steps)



MSD:

$$\rho(t) \sim \left\langle \overline{R}_n^2 \right\rangle$$
$$\left\langle \overline{R}_n^2 \right\rangle = \sum_{j=1}^k \frac{\overline{R}_{nj}^2}{k} ; \ k = \# \text{ of traj.}$$
$$t = \tau n$$

au : time step size

III. Considering one length for each time step in each trajectory and then averaging them over the collection of trajectories: Example (50 trajectories of 4000 time steps)



MSD:

$$\rho(t) \sim \left\langle R_n^2 \right\rangle$$

$$\left\langle R_n^2 \right\rangle = \sum_{j=1}^k \frac{R_{nj}^2}{k}$$
;  $k = \#$  of traj.

 $t = \tau n$  $\tau : \text{time step size}$ 

*IV.* Averaging lengths for each time step in each trajectory and then averaging them over the collection of trajectories: Example (50 trajectories of 4000 time steps)



MSD:

$$\rho(t) \sim \left\langle \overline{R}_n^2 \right\rangle$$

$$\left\langle \overline{R}_{n}^{2} \right\rangle = \sum_{j=1}^{k} \frac{\overline{R}_{nj}^{2}}{k}$$
;  $k = \# \text{ of traj.}$ 

 $t = \tau n$  $\tau$ : time step size

### Questions

- Can we assume that the population of particles is diffusing? How do we test a random walk model?
- Can we use the MSD of each trajectory to statistically differentiate their behaviour?

#### Correlated Random Walk (CRW)

**CRW**: Movement sequences are described in terms of move lengths  $(l_i)$  and turning angles  $(\theta_i)$  distributions.

#### **Expected MSD**:

Skellam (1973); Kareiva & Shigesada (1983)

$$\overline{R_n^2} = nm_2 + 2m_1^2 \left[ \frac{(c-c^2-s^2)n-c}{(1-c)^2+s^2} + \frac{2s^2+(c+s^2)^{\frac{n+1}{2}}}{\left[(1-c)^2+s^2\right]^2}\gamma \right]$$

$$\gamma = \left[ (1-c)^2 - s^2 \right] \cos\left( (n+1)\alpha \right) - 2s(1-c)\sin\left( (n+1)\alpha \right); \quad \alpha = \arctan\left(\frac{s}{c}\right)$$

$$m_{1} = \frac{1}{k} \sum_{i=1}^{k} \ell_{i}; m_{2} = \frac{1}{k} \sum_{i=1}^{k} \ell_{i}^{2}; c = \frac{1}{k} \sum_{i=1}^{k} \cos \theta_{i}; s = \frac{1}{k} \sum_{i=1}^{k} \sin \theta_{i}$$

Note: If the distribution of turning angles has a uniform density, then

$$\overline{R_n^2} = nm_2$$

#### CRW. Angle and Length Distributions



#### **Main Question:**

Is the movement of receptors driven by a CRW?

 $H_0$ : The population of particles moves according to a CRW  $H_1$ : CRW is rejected

#### Bootstrapping Steps (Kareiva et. al, 1983):

- 1. Calculate observed and expected MSD (from all the population)
- 2. Prepare the distributions of lengths and angles from experimental data (from all the population)
- a. Using these distributions generate the same # of pseudotrajectories as experimental trajectories.

b. Calculate and plot the MSD using these pseudotrajectories

c. Repeat this procedure about 100 times.

- 4. For each time step truncate the five highest and lowest values for the MSD. This will create, for example, a 90% confidence interval.
- 5. If the observed MSD does not fall into the confidence interval the null hypothesis is rejected. Otherwise, it  $H_o$  cannot be rejected.



Observed and expected MSD





#### Question:

What is causing the receptors to disperse slower than expected from a CRW ?



#### Possible answers:

- Existence of angle-length correlations?
- Existence of autocorrelations?
- The existence of two or more populations moving at different rates (possibly caused by cytoskeleton interaction) ?

#### Acknowledgements







Dr. Gerda de Vries, Dept. of Math., UofA



Vishaal Rajani, M.Sc. Student, Dept. of Math, UofA



Dr. Christopher Cairo, Dept. of Chemistry UofA



A&PDF (Academic & Professional Development Fund) AwardRIG (Research Incentive Grant)