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Outline

I. Experimental population data & experimental 
individual data at the cellular level:  Fluorescence 
Recovery After Photobleaching (FRAP) data and 
Single Particle Tracking (SPT) data

II.   Population-based modeling example: Modeling 
self-organization of nuclear proteins.

III.  Individual-based modeling example: Testing a 
correlated random walk for cellular receptors.



Fluorescence Recovery After Photobleaching (FRAP) 
experiments: protein population data

The data are used to quantify the mobility by determining an effective diffusion 
coefficient Deff via a diffusion approximation of a random walk
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FRAP experiment of SC-35 in an Indian Muntjac Fibroblast cell nucleus



Single Particle Tracking (SPT) experiments:
individual protein data

  : Averaging over time or over an ensemble of similar particles

( ) ( ) ( )( )20rtrt −=ρMSD:

( ) ; )(),()( tytxtr = position of the particle at time t

MSD is related to the 
diffusion coefficient via 
a random walk approach

ρ(t) = 4Dt



QUESTIONS

1) Using population data, can we describe the individual 
mechanism driving the dynamics of the population?  
Pop. data → Ind. mech. → Pop. dyn. 

2) Using individual data, can we describe the dynamics of 
the whole the population?
Ind. data → Ind. mech. → Pop. dyn. 

ANSWER
Yes and No ??  … Let us illustrate this non-contradictory 
answer with a couple of examples:  
I.Population data of splicing factors
II.Individual data of membrane receptors 



Population data of splicing factors

Fluorescence microscopy image of SC-35 
distribution in an Indian Muntjac Fibroblast cell nucleus

5μm

Fluorescence Microscopy experiments
(FRAP) have shown that:

1. SFs are in continuous flux between 
speckles and nucleoplasm.

2. SFs move randomly within the nucleus 
at a rate two orders of magnitude lower 
than expected.

Question:
What is the mechanism responsible for 

the formation of speckles?

Splicing factor compartments (speckles)



Self-organization of splicing factors

1.  Self-organization is responsible for 
the formation of speckles (modulated by 
phosphorylation and dephosphorylation)

Self-organization
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Dephosphorylation

Phosphorylation

Schematic Model
(T. Misteli, J. Cell Sci., 113: 1841-1849, 2000)

2.  The existence of an underlying nuclear 
scaffold (nuclear matrix) plays a major role 
in the organization of SFs (it slows down 
the mobility of SFs via binding)

Nuclear 
Scaffold

Full
(G. Carrero, M.J. Hendzel, G. de Vries, J. Theor. Biol., 239: 298-312, 2006)
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(motion and self-interaction term)

A population model for 
self-organization of SFs

:)1( bDkD −= effective diffusion coefficient of SFs
k:  proportion of SFs bound to the nuclear scaffold
Db:  diffusion coefficient describing the Brownian

motion of SFs.
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Motion and Self-Interaction Term
(for unphosphorylated SFs)

No bias

Diffusion Approximation 
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Fokker-Planck Equation

( ) ( )NDLR −=+= 1  
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Diffusion Approximation 

Random Walk Analysis

xτ τ

λ−x λ+xN(x,t)

L(x,t) R(x,t)

xτ τ

λ−x λ+xN(x,t)

L(x,t) R(x,t)

Task: To find the motility ( )ND −= 1 μ

( i.e., to find the probability N(x,t) ):



Motion and Self-Interaction Term
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=∫(Kernel function)

= α k , α :  affinity of the self-interaction
k :  proportion of bound SFs

ω:  critical density dictated by space limitations
κ:  aggregative sensitivity
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κ N(x,t)  is proportional to the average 

density  of SFs bound to the underlying 
structure.

Developing the probability N(x,t):



Motion and Self-Interaction Term
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in N(x,t), calculating the integral, and neglecting 4th order and higher terms with 
respect to σ, we obtain the motility

dstsxusHtxN  ),( )( ),( ∫
∞
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ω
κ Task: To find the motility

( )ND −= 1 μ



Motion and Self-Interaction Term
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The General Model
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Aggregation-Diffusion Equation

Aggregation-Reaction-Diffusion Equation
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The model describes the onset of the compartmentalization of splicing factors
(G. Carrero, M.J. Hendzel, G. de Vries, J. Theor. Biol., 239: 298-312, 2006)



Individual data of membrane receptors

Single Particle Tracking (SPT): 
The study of a trajectory or a collection 

of single trajectories

Question:

1. Can we characterize the dynamics 
of the population with an individual trajectory?

2. Can we characterize the dynamics of the 
population with a collection of trajectories?

Cairo et al. (2006)



Mean Square Displacement (MSD) 
and Diffusion

  : Averaging over time or over an ensemble of similar particles

( ) ( ) ( )( )20rtrt −=ρMSD:

( ))(),()( tytxtr = ;  The position of the particle at time t

Dtt 4)( =ρ

The mean square displacement is related to the diffusion coefficient via

Thus, an accurate estimation of this parameter requires an accurate MSD 
calculation.



Estimating the MSD for one trajectory
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Estimating the MSD for one trajectory
I. Considering one length for each time step:  Example 



Estimating the MSD for one trajectory
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II. Averaging lengths given by position pairs obtained with the time separation nτ
(Qian et. al, 1991)



Estimating the MSD for one trajectory

For a general  n : ,  )(    )(  
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II. Averaging lengths given by position pairs obtained with the time separation nτ
(Qian et. al, 1991)



Estimating the MSD for one 
trajectory

II. Averaging lengths given by position pairs obtained with the time 
separation nτ : Example

ρ(t) = 4Dt

Q: Is this diffusion coefficient representative of the whole population?

A: ??



Estimating the MSD for a 
collection of  trajectories 

I.    Considering one length for each time step in each trajectory and then 
averaging them over the collection of trajectories:      
Example (10 trajectories of 4000 time steps)
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Estimating the MSD for a 
collection of  trajectories 

II.    Averaging lengths for each time step in each trajectory and then 
averaging them over the collection of trajectories: 
Example (10 trajectories of 4000 time steps)
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Estimating the MSD for a 
collection of  trajectories 

III.    Considering one length for each time step in each trajectory and then 
averaging them over the collection of trajectories:      
Example (50 trajectories of 4000 time steps)
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Estimating the MSD for a 
collection of  trajectories 

IV.    Averaging lengths for each time step in each trajectory and then 
averaging them over the collection of trajectories: 
Example (50 trajectories of 4000 time steps)
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Questions

Can we assume that the population of 
particles is diffusing? How do we test a 
random walk model?
Can we use the MSD of each trajectory to 
statistically differentiate their behaviour?



Correlated Random Walk (CRW)
CRW: Movement sequences are described in terms of move     

lengths (li) and turning angles (θi) distributions.
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CRW.   Angle and Length Distributions
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Main Question:

Is the movement of receptors driven by a CRW?



Testing the Data for Correlated 
Random Walk

Bootstrapping Steps (Kareiva et. al, 1983):

1. Calculate observed and expected MSD (from all the population)
2. Prepare the distributions of lengths and angles from experimental data 

(from all the population)
3. a. Using these distributions generate the same # of pseudotrajectories as 

experimental trajectories.
b. Calculate and plot the MSD using these pseudotrajectories
c. Repeat this procedure about 100 times.

4. For each time step truncate the five highest and lowest values for the 
MSD. This will create, for example, a 90% confidence interval.

5. If the observed MSD does not fall into the confidence interval the null 
hypothesis is rejected.  Otherwise, it H0 cannot be rejected.

H0 : The population of particles moves according to a CRW
H1:  CRW is rejected



Observed and expected MSD
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Testing the Data for Correlated 
Random Walk
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Each blue MSD curve is obtained
From 75 pseudotrajectories
generated from the angle and length 
distributions. There are 100 
blue MSD curves. 
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Testing the Data for Correlated 
Random Walk

The observed MSD does not fall 
into the confidence interval

H0 is rejected! CRW is rejected!



Question:
What is causing the receptors to 
disperse slower than expected 
from a CRW ? 

Possible answers:
- Existence of angle-length correlations?
- Existence of autocorrelations?
- The existence of two or more populations moving at different rates 
(possibly caused by cytoskeleton interaction) ?  
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