Chapter 5. Optimization of Models

The parameters of model auroral current systems were described in the previous chapter.
To model the currents at any given time, these parameters must be adjusted to provide an
optimal match to the available observations. Once that optimization is done, it is claimed
that the data have been inverted within the framework of the proposed forward model. As
will be seen in later chapters, the simple forward models proposed do, in fact, allow a good
representation of the auroral current systems. Their parameters are also demonstrably
amenable to optimization based on ground based data, at least in the case of east-west
systems. After a brief discussion of aspects of the forward models which are relevant to the
optimization, optimization techniques themselves are discussed and demonstrated below.

Inversion of geophysical data will sometimes not be able to give unique results. If a
particular model is put forward to interpret certain data, there may exist other models able
to fit the data about equally well. The classic relevant example of this is the long debate
(1930's to 1960's) about the nature of the current systems producing geomagnetic
disturbances, which has already been alluded to. As pointed out by Akasofu [1991],
Chapman's assertion, based on the knowledge at the time, was that only equivalent current
systems (in the ionosphere) could be discussed. Despite the economy of Birkeland’s
assertions at about the turn of the century that three-dimensional systems would explain not
only the magnetic variations but the precipitation of particles needed to create the aurora,
Chapman’s view of ionospheric currents being the physical currents became accepted. This
was not solely due to Chapman’s dominance in the field and refusal to openly debate.
Birkeland’s assertions, and the supportive modelling of particle trajectories done by
Stormer, were considered byk‘ Chapman, and even illustrated in the influential book
Geomagnetism [Chapman and Bartels, 1940]. The contemporary, and incorrect, context
was the view, prevalent at the time (and still held by semi-informed laymen today), that
particle streams ejected by the Sun were directly involved in production of aurora.
Particularly over the long distances this implied, it appeared to Chapman that a stream of
only one charge could not hold its integrity, and that precipitating particles, although
present, were in neutral streams [Chapman and Bartels, 1940, Chapter 24]. Such neutral
streams would of course have little or no magnetic effect. Despite vigorous championing of
the Birkeland hypothesis by Alfvén, it was only in the 1960’s that the existence and
importance of extra-ionospheric currents was widely realized [Dessler, 1984]. As already
described, wide acceptance of the three-dimensional nature of the current systems occurred
only after space measurements of magnetic fields which could be plausibly due only to
field-aligned (or nearly so) currents. The basic model used here is derived from knowledge
since ascertained about the physical current systems. The same techniques could, in fact, be
used to give a representation of the data based on a non-physical model (such as Chapman
equivalent currents). Thus, the applicability of the model here, and the uniqueness of the
solution, rest on knowledge which is not incorporated into the technique. In this sense the
numerical techniques are hopefully being used in keeping with Hamming's [1986] maxim
that “The Purpose of Computing is Insight, Not Numbers”. Nevertheless, in practice the
results of the computation are numbers, and these are in general the numerical parameters
which are varied in the proposed model until that model represents the data optimally.
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a. Parameters

The choice of parameters for a model may be viewed as part of the 'direct problem'’: for a
good model the parameters will allow the reproduction of the data [Sabatier, 1993]. In fact
the basic problem faced by the analyst is the 'inverse problem' in which data (usually
contaminated by noise) are available and from which the parameters are to be deduced.
Generally we will be convinced that the number of parameters being used is far smaller than
the actual number required for a complete description of the physical system. For example,
in the lower magnetosphere, the current density in SI (MKS) units is a sum over the
charge-velocity product of at least thousands of particles. The resulting magnetic field seen
at some point is physically due to the complex motion of those thousands of particles, yet
may be well represented in practice from knowledge of just an integrated quantity, the
current density. The very large-dimensional space of physical states and defined parameters
contains such integrated parameters as a subspace. The projection of the state vector of the
overall system onto the subspace defined by the parameters is the best approximation
possible, within that subspace, to the overall state. The approach to approximation as
viewed from a vector space point of view is discussed briefly by Anton [1987, ch. 7]. The
fitting of data by models is one step removed from the fitting of functions by other
functions since in fact the actual state is not generally projected’ onto the parameter
subspace, but rather the state maps into a data space and the model provides a method of
mapping the parameters into that space also. Within that space there exists an optimal
choice of parameters bringing the two projections as close as possible. The choice of a
model with its associated parameters and the techniques for obtaining the best values of
those parameters are related but distinct. Due reflection must be given to the choice of a
model. Not only the physical basis of the model may be relevant but also its efficiency.
Does the data set provide sufficient information to distinguish the number of parameters
chosen?

The usefulness of parameters and their choice depends on their intended application. A
spherical harmonic expansion such as the IGRF representation of the Earth’s main field
[Langel, 1987] has important practical applications, yet most of the parameters do not have
an independent physical meaning. Representation of the active fields at high latitudes by
similar expansions [Walker ez al., 1995] can also not claim to provide parameters having a
direct correspondence to physical parameters, although the spatial distribution of
approximations to some physical fields (for example equivalent ionospheric currents) may
be represented in terms of the parameters derived to represent the magnetic field. The
approach of representing fields in terms of expansions does not yield an immediate
mechanistic model [Bates and Watts, 1988, p. 67] for the phenomena being studied. Such
a model, in its most powerful form, has both fewer parameters in general than does a non-
mechanistic model, and more meaning attached to those parameters. A useful illustration of
the difference may be given by considering the Earth’s nearly dipolar field. In practice at
least 50 parameters are used in the IGRF, of which the first is the dipolar term. If the field
actually were that of a dipole, the statement of this fact in terms of the IGRF as presently
used would have all parameters but one equal to zero. This may seem a trivial example, but
it may be taken one step further. Consider a shift of the dipole away from the origin of the
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expansion (in fact the Earth’s field is largely that of such an ‘eccentric dipole’). In this case
the field would require all terms of the finite number in the IGRF expansion for its
description and even then that description would be only an approximation. Yet in fact the
difference between this field and that of a centred dipole can be represented by at most only
three more parameters representing the origin translation. Obviously the expansion is
wasteful of parameters, those parameters having (individually) little relation to the physical
situation, and provides little insight into that situation although possibly describing it well.
In terms once more of vector spaces, there may well exist a vector space in which relatively
few parameters suffice to describe a physical situation. In the case of particles and currents
previously described, that efficient space may be the one comprised of the variables usually
associated with MHD; in the case of the eccentric dipole, it is clearly that of the dipole
parameter and translations. In this study the aim is characterization of substorm current
variations in a manner which leads to physical insight. For that reason a parametrization is
sought which adequately describes the data (reflecting success of the optimization process)
and also has parameters with physical meaning. The aim here, then, is to invert data into a
small and efficient subspace in which the parameters have physical meaning and shed light
on causality. This point is reflected in the recent statement about the substorm current
wedge (SCW) current system, from Tsyganenko [1997]: “due to the very dynamical nature
of the disturbances and a relatively small number of available simultaneous data, one can
expect to fit meaningfully only a few parameters of the SCW, reflecting its most important
characteristics. This also requires the model to be relatively simple.”

A further aspect of having a small number of parameters, each having a direct physical
interpretation, is the practical aspect. If the physical effects of changing the parameters are
understood by the analyst, the analysis itself can be more effectively done. To quote Bates
and Watts [1988, p. 72], “one of the best things one can do to ensure a successful nonlinear
analysis is to obtain good starting values for the parameters - values from which
convergence is quickly obtained.” Parameters which lend themselves to initial analysis and
choice of starting values by graphical methods, by understanding the response of the
goodness of fit to their derivatives, or by insight into behaviour with reduced
dimensionality (i.e. holding one or more parameters fixed), are preferred.

An attempt at simple characterization of substorm current systems was made by
Cramoysan and Orr [1993] within the framework of the McPherron current wedge. The
parameters chosen are only four, the meridians of filamentary field-aligned currents, the
latitude of the ionospheric path joining them, and the magnitude of the current. The
geometrical parameters are considered to be fixed while the current varies. A slightly more
refined, but still limited, approach to this problem allows all of the parameters to vary, vet
only considers one wedge to be active. An independent but similar approach was used by
Connors [1993] and considerably earlier by Horning ez al. [1974]. The Cramoysan and Orr
approach arguably oversimplifies the problem by having not only one simple current system
in the form of the substorm current wedge, but further by having only one parameter (the
current) changing in association with it. That the other parameters of the wedge generally
also vary is well known (see e.g. Wiens and Rostoker [1975]). The use of more parameters
in the other cited studies allows a good fit to the data, but in both cases only stations distant
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from the auroral zone current systems were used, so that information was lost and the
parameters solved for correspond to ‘lower-order’ approximations.

In general, and in particular if data from the auroral zone are included, more parameters
must be used, as there is more to auroral zone currents during a substorm than simply the
substorm current wedge. In practice the global current system during active times is
regarded as having two other loops active which may be reasonably represented by a
similar overall configuration to that of the wedge. These loops are those of the eastward
and westward electrojets in the evening and morning sectors, respectively. They are similar
to the substorm current wedge in that evidence exists of regions of net downward field-
aligned current feeding them, ionospheric current flow, and then net upward field-aligned
current where the current leaves the ionosphere. The global current system is also known
to have continuous activity in current systems whose ionospheric paths are aligned nearly
north-south and whose physical existence is shown through satellite passes through the
associated field-aligned currents [Tijima and Potemra, 1978]. These systems, discussed in
section 1.d, generally show considerably less ground effect than do the electrojets or
substorm current wedge, for reasons illustrated in Chapter 4. Nevertheless, parameters may
be added to the model to represent them, and those parameters optimized. Knowing
beforehand that the perturbations associated with this near-solenoidal system may be small,
one might expect the problem of finding their parameters to be somewhat ill-posed if based
only on surface measurements. For that reason, the examination of satellite data which may
better fix those parameters is desirable.

b. Forward Model Choice

The basic possible configurations of current systems may be classified by the flow direction
of electric current in the ionosphere. It is now known that auroral zone currents are for the
most part due to currents entering the ionosphere, flowing through it over some distance,
and then bleeding out into space once more through field-aligned current flow. The
specification of entry and exit points is tantamount to specifying the ionospheric current
flow direction, provided that this current flow is basically rectilinear. The ionospheric
electric current flow direction, considered as a vector in spherical coordinates based on the
tilted dipole poles, may be decomposed into a north-south (meridional or poloidal) and an
east-west (toroidal) component. This natural geometric division of types of current flow
also corresponds roughly to expected flow directions of Pedersen and Hall currents in the
observed auroral zone electric potential distribution (see section 2.c2).

It is observed that east-west currents in the auroral zone may extend coherently across
several time zones (tens of degrees), while the auroral zone itself has a north-south extent
which is usually less than this, rarely more than ten degrees. Thus a normal parametrization
of these currents is through a system of large east-west extent relative to its width. Since in
fact the currents flow within an auroral oval having varying latitude at each meridian, in
practice any requirement that these current systems have strictly east-west flow is relaxed.
- For a system spanning several time zones yet restricted to the auroral oval, flow will
necessarily be roughly east-west, but that is all. There may be some meridional component

113



to the roughly toroidal ‘Hall’ electrojet and this meridional component will be well defined,
primarily by the maxima in the magnetic horizontal component underlying the electrojet
and the maxima in magnitude of the vertical component near its boundaries.

North-south current flow in the ionosphere may be regarded as having closure currents at
or near the borders of the auroral zone. A parametrization involving strictly north-south
flow is not overly restrictive and in addition forces this type of current system to be
different from the east-west type. The requirement for north-south flow in this sense
imposes a rough orthogonality condition - there really are two types of current systems
present. While in principle the less restricted east-west systems allow choices of parameters
which would allow them to become nearly north-south oriented, the data usually furnish no
‘motivation’ for them to do so. The north-south systems are not allowed to have any
toroidal current component, but have flow restricted to meridians. Since these poloidal
systems, if long, contribute little perturbation even for relatively large currents, their
parameters could be expected to be unresponsive to the observations. If allowed to have an
unrestricted toroidal component, such current systems could rearrange themselves to have
primarily toroidal current flow since such flow is most effective at producing ground
perturbations and thus can be changed to efficiently get a good match to the data. This
would change the originally north-south aligned currents into primarily east-west currents.
In practice the problem described does occur if initially poloidal systems are not
constrained to remain poloidal by not allowing any toroidal flow. By contrast, the east-west
systems are constrained by ground observations of the X, and Z components, to which
they primarily respond, to cover large extents east-west. North-south systems are not well
constrained from the ground but primarily respond to the Yy, component. As was the case
in the discovery of the region 1 and 2 field-aligned currents which was through satellite
observations, the primary constraint on the north-south system is through observations
above the ionosphere. Such observations are not directly included in the present version of
the Automated Forward Modelling routine. As seen near the end of Chapter 4, polar cap
observations may provide some basis for solving for the poloidal currents. However, it
does not harm to stress once more that inclusion of the north-south currents, if constrained
only by ground observations, must be very carefully monitored.

In section 4.d, representative magnetic fields arising from the two basic types of current
systems were discussed. Those results parallel those of Kisabeth [1972], but are for
systems exceeding the lengths which he studied. The original Kisabeth method breaks
down numerically for systems of the length shown, as the spread-out point arrangement of
current sources in Kisabeth’s implementation of the Biot-Savart integral, using Gaussian
integration, becomes dominant. A modified method was used in this study. This method
consists of a simple rearrangement of the current elements used in Gaussian integration
(section 4.d.1) so that there is a dense placement of elements near any given observation
station. This eliminates the problems of Kisabeth’s method as applied to long systems at the
cost of doubling computation time. Here we briefly discuss the parametrization of the
toroidal and poloidal systems. The parameters and the relationships between them indicated
here are those used in the modelling.
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The paths followed by currents and those defined by the intersections of sheets of field-
aligned current with the ionosphere are here, for simplicity, regarded to be “straight’, which
here has the following definition. A ‘straight’ line on the curved surface of the Earth is
regarded as a locus of points along which the derivative of the latitude of points along the
locus with respect to their longitude is a constant. This is a fairly natural way of
parametrizing lines of current flow, but there could be others defined, and Gaussian
integration can be redefined to use any parameter. Auroral currents on the largest scale
generally flow parallel to the auroral oval, and thus more complex paths can be defined
[e.g. Kisabeth 1972]. Here any attempt to represent such a more complex path is made
using shorter ‘straight” paths, appropriately joined. An example may be found in Chapter 6
where there appears to be a northward ‘spur’ of electrojet, deviating from what is likely the
main electrojet following the auroral oval. These two systems are constrained to intersect
and form one joined system in a geometrical sense, although differing currents may flow in
each. It was also found necessary, in Chapter 6, to ‘bend’ the westward electrojet. This
was done by having two systems constrained to join, but with the current also constrained
to be the same in each.

1. Parameters of East-West (Toroidal) Systems

As indicated, the toroidal systems are generally of great east-west extent compared to their
north-south extent. Also mentioned was the fact that it is in practice not necessary for
practical reasons, nor in accord with observations, to restrict the current flow in these
electrojet systems to be strictly along lines of constant magnetic latitude. In order to specify
an east-west system of finite north-south extent, nine parameters are needed. The system
has a region of downward current at one extremity, with two points (each consisting of a
pair of longitude, latitude parameters) specifying each end of the sheet. Current then flows
through the ionosphere to another current sheet, where it flows upward. As each of the
two sheets requires four parameters for its general specification, there are eight geometric
parameters associated with the system. The current flowing throughout the system is the
ninth parameter. Figure 5.1 illustrates this type of system, with a rather distributed current
‘feeding’ the system and a rather concentrated current ‘draining’ it. Although the regions of
field-aligned current flow are modelled by sheets of current, the effects seen at a distance
would be similar to those of distributed regions of current. In most cases there are not
enough data to allow these two cases (sheet or distributed region) to be distinguished, so
that it would not be justified to add more parameters to specify more detail than in this
simplest representation by sheets of field-aligned current. The proof of this statement is to
be found in the generally good fits available through these simple systems as evidenced in
Chapters 6 to 10.
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Figure 5.1 Single east-west current system (electrojet) illustrating its parameters.
Downward current is indicated by black circles arrayed along a line. Region of current
flow is shaded grey in proportion to total current in the system. Upward current is
indicated by white circles arrayed along a line. Direction of ionospheric current flow is
from black circles to white circles within the electrojet.

The optimization procedure will generally produce meaningful results if long east-west
systems are used. The maxima in magnetic perturbations near or bordering the long
electrojets which are normally observed in the auroral zone ensure this. In practice, all
parameters within such a system may be varied and it could be expected that their
optimized values would be meaningful and unique. This is to a large extent true, but certain
parameters may be regarded as ‘degenerate’. The first, and innocuous, form of such
degeneracy may be seen, in that reversal of the northernmost and southernmost points of a
current sheet does not in any way change the sheet. It does not matter which is specified
first in a list of parameters. Within a current system specified by two sheets, interchanging
the northernmost and southernmost points of both sheets forming the ends of the system,
does not affect the system. A simple example is that of, say, westward current flow
bounded by two lines of constant magnetic latitude. It does not matter which is specified
first, the northern, or the southern, boundary. A similar and only slightly less innocuous
degeneracy is that of direction of current flow. Within an east-west system, a positive sign
may be attached to current flow in one direction. With some convention on order of
parameters or graphical representation to represent upward or downward field-aligned
flow at the ends of the system, reversal of the sign of the current causes the roles of
‘upward’ and ‘downward’ to be reversed. In most of the graphical representations in the
chapters presenting results, this possible sign reversal has been corrected for, and the
regions of up and down current indeed correspond to those directions. In some cases, a
convention of positive sign for a direction of current flow has been adopted, and sometimes
a negative value is used to indicate flow in the opposite direction. For example, in a case
where positive current flow is defined to be toward the west, negative values mean that the
current flow was towards the east. Generally little confusion arises from these conventions.
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A more troublesome type of degeneracy has a possible physical basis yet results in current
systems which ‘look’ unphysical. As illustrated by Figure 5.2, if the end point parameters of
only one of the bounding currents are reversed, then the joining of the end points, done
according to order in a parameter list, causes crossing of the lines bounding the edges of
the region having ionospheric current flow. This results in, rather than a simple
quadrilateral, a ‘bowtie’ shape for the region of current flow. Clearly, not much of this
configuration corresponds to realistic ionospheric current flow. The current density at the
crossover point is in principle infinite and it is difficult to see that any naturally occurring
current system would evolve to look like this. Yet such a system is indeed acceptable under
the ‘rules’ envisaged above, which call for specification of a current system through two
lines which are the loci of field-aligned current, and their joining with ionospheric current
flow. Clearly these ‘rules’ need to be modified, and they are in practice, simply by adding
the further stipulation that if the boundary lines for the ionospheric current flow cross
within the longitude range of the current system, that system is not allowed.

Figure 5.2 Reversal of a single bounding current sheet to result in a ‘bowtie’.

While it is easy to say that ‘bowtie’ systems are not ‘allowed’ and to exclude them from the
realm of acceptable results from the programme, there may be cases in which they do in
some sense represent what the currents are doing. In particular, one can imagine a long
system, but one not well constrained by stations all along its length. Then it is quite possible
that the region of enhanced current density near the crossover point would in fact not be
near a station, and thus not cause too much damage to the optimal fit to the data. Further,
as opposed to rectilinear flow in the sense of ‘constant derivative of latitude versus
longitude’ along the current flow lines, current flow generally follows the auroral oval,
which is a curved path.
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If there are stations straddling the auroral oval along two widely separated meridians (see
Figure 5.3), then the local current flow across these may be best locally represented by
straight line currents across each meridian. Due to the curvature of the auroral oval, these
straight line segments may cross each meridian at a different angle. It is possible to imagine
bowtie configurations which would best represent the current flow as seen at each meridian
since, with arms of unequal length, maximal current flow at different angles may be had in a
‘bowtie’, as illustrated in Figure 5.3. This is not possible with a simple quadrilateral figure.

Figure 5.3 Optimal fit of a curved current system by a ‘bowtie’ system.

VRN
Thus it is possible to see that in some cases a ‘bowtie” could give an optimal fit not possible
with a ‘straight’ system. It is even possible that from an initially straight system provided as
a starting point, a bowtie system could arise and be optimal. Since there are strong physical
grounds for rejecting bowtie systems, this cannot be allowed to happen, and rules are
supplied in the programme to prevent it. ‘Bowtie’ configurations may also arise due to an
inadequacy of the forward model in the regions of field-aligned currents. As alluded to
above, the simple model used here has simple sheets where physically one might expect
field-aligned current flow over relatively large areas. It has been argued above that in many
cases data will not be sufficient to discern the details of the regions of field-aligned current
flow in any case. This in turn implies that if we are able to make models with good fits
(which we are), based on the current sheet approximation, then the models must not be
very sensitive to the parameters involved in specifying sheet orientation. Such
indeterminacy means that the difference between a ‘bowtie’ system and a preferred
rectilinear system may be small in terms optimality of fit, and it is even possible that the
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‘bowtie’ system will have a lower value of an optimizing parameter (see discussion in next
section). Since the routine efficiently finds the optimal fit, it can prefer ‘bowties’ over
rectilinear systems if this is the case. However, since the problem arises precisely because
of a lack of sensitivity to the parameters determining whether a system is a ‘bowtie’ or not,
one can repair ‘bowties’ simply by detecting them and changing these parameters. In
practice the ‘untying’ is done by interchanging longitudes of the ends of one sheet, without
interchange of the corresponding latitudes. This untwists the ‘bowtie’ while retaining the
longitudinal range of the field-aligned current sheet, and has proven a very satisfactory
approach to resolving the problem.

2. Parameters of North-South (Poloidal) Systems

Much like an east-west system, a north-south system nominally requires eight geometric
parameters to specify its four corners. However, due to the ill-posed nature of the problem
of determining the parameters of north-south systems from the ground, it is necessary to
restrict the current flow in these systems to be strictly along meridians (i.e. purely poloidal).
This effectively removes two parameters from play, meaning that only seven parameters
are needed. These are the longitude of the most westerly points, the latitudes of up and
down current at that longitude, the corresponding three parameters at the most easterly
point, and the current. A north-south system is illustrated in Figure 5.4

Figure 5.4 North-south current system as specified by seven parameters.

\
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In practice, the north-south system is not shown in illustrations in this thesis, even where
incorporated into the modelling. The practical reason for this is that the east-west systems
have by far the largest ground effect and thus must be illustrated, whereas the north-south
system has little ground effect and would simply clutter the map. Another aspect is that not
only is the north-south system generally acknowledged to be in essentially the same place
as the east-west electrojets [Senior and Robinson, 1982], but these parameters for this
system would be poorly defined by ground modelling in the first place. Since this is the
case, in most cases there has been a relationship established between the east-west and
north-south systems (usually that their borders are essentially identical), and the parameters
of the north-south system have not been independently derived in modelling, apart from
(usually) the total current in the system. ‘

3. Constraints on Parameters

Various parameters may not be entirely independent or may have known properties which
are not part of the model. In this case it may be useful to constrain the parameters with
respect to one another or an external value. The following discussion explains how this is in
practice realized in this project. In other methods which have been discussed(in Chapter 4)
the issue of constraint may also arise. For AMIE, some aspects are considered in Appendix
I, Section IIT of Knipp [1989], and use of the statistical expected value matrix C; as a
constraint was discussed in Section 4.c above, so constraint in other methods is not
discussed further here.

A constraint may be implemented in Automated Forward Modelling in at least two ways,
both of which have in fact been used. Since in many cases a constraint can be expressed as
a non-linear equation or operation, it can be accommodated in a nonlinear fitting routine in
a natural way by simply incorporating the rule of constraint into the calculation routine of
the forward model. In this way, the forward model may contain rules (the constraints)
about the interrelation of its parameters. The second, less rigid, method of enforcing a
constraint is to impose a penalty on an optimization variable (see next section) if the
constraint condition is not met. This is in principle similar to the approach taken in AMIE,
although here it was generally applied in a multiplicative fashion rather than the basically
additive fashion employed in AMIE.

An operational example may be offered as follows. Consider a case in which the latitudinal
width of an electrojet has been well determined along one meridian where there is a
magnetometer chain. Global modelling is to be done, including an adjacent region (a gap)
where there are insufficient stations to well constrain the width of the electrojet. Based on
past knowledge, or better yet based on some possibly available source of ancillary
information such as a satellite image, it may be reasonable to constrain the electrojet
latitudinal width to be constant. Incorporating the constraint rule into the forward
modelling could be done simply by requiring the parameters specifying the latitudes of the
ends of the upward and downward current sheets to be separated by the same amount. In
practice, rather than solving for the latitudes of the four comers of the region bounding
ionospheric current flow, one would search for the longitudes and for one latitude (say the
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most southerly) at each end, the other latitude at each being calculated through addition of
the latitudinal width. In this case one effectively removes two parameters from the system,
since the sheets of field aligned current at the ends of the region of ionospheric current flow
have one less free parameter each. The alternate approach is to incorporate the constraint
rule into the optimization variable which is systematically reduced in optimizing. In this
case, one would increase that variable based on how far the difference of latitudes in a
proposed forward model deviated from the desired value. Since the optimization involves
reduction of the variable, increasing it as a proposed solution deviates from some favored
solution will result in a tendency for the solution to remain near the favored solution unless
strongly pulled away by the data. This latter approach is less rigid since the data could
dictate violation of the constraint if sufficiently ‘constraining’. For example, if one later got
another set of meridian chain data to fill the gap referred to above, the first method
mentioned would not respond to the new information this would give about electrojet
- width, whereas the second method would. The changes in the final result would vary to a
degree determined by the relative weighting of the constraint condition and data.

In practice the difficulty in implementing constraints is largely one of programming. In this
project a simple parser was developed to operate on an auxiliary file which told which
parameters were to be varied and which to be held constrained. In the case of a parameter
to be constrained, it was possible to specify that its value was to have some relationship to
that of some other parameter, or to be held fixed. Simple operations involving another
parameter and a constant were implemented: for example it was possible to constrain a
northern corner of the current flow quadrilateral to be some latitudinal separation from the
corresponding southern corner. An example will now be given to illustrate use of
constraints in modelling. Table 5.1 shows parameters used in an actual model run to specify
initial conditions for two currents. As mentioned above, the quadrilateral region within
which current flows is specified by eight geometric parameters and by the total current
flowing within the region. The geometric parameters may be split into those associated
with the sheet of upward “drain’ current from the ionosphere and those of the downward
‘feed’ current into the ionosphere. These sheets are in turn represented by their extreme
points, each specified by a longitude (negative for west longitudes) and a latitude. The set
of four such pairs of points, plus the current, completely specifies a three dimensional
current system as used in modelling here. Within Table 5.1, the parameters for the upward
current sheet in the second system are identical to those for the downward current sheet in
the first system. This is simply a way of tying the two systems together: since the current in
the second, more westerly system is greater than that in the first system, the net effect is
that current flows into the ionosphere at this junction.
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Table 5.1 Current Parameters for Two Current Modelling Run

Longitude | Latitude. | Longitude, | Latitude, | Longitude Latiude. | Longitude | Tatitide. | Current (MA)
Upl Upl 1 Up2 Up2 Down 1 Down 1 Down 2 Down 2

-104.528 62.3278 -10.2782 72.2485 -26.4025 63.4717 41.7283 77.6546 0.196215
-131.174 73.8745 -190.445 76.2815 -104.528 62.3278 -10.2782 72.2485 0.164395
Table 5.2 Rules for Variation and Constraint of Parameters for Two Currents
Longitude | Latitude: | ‘Longitude. | Latitude. | Longitude Latitude. | Longitude | Latitude, | Current(MA)
Upl. | Upl Up2 1 .Up2 S Down'l Downl ' -4:Down2 Down2 |

1 1 1 1 1 1 1 1 1

1 1 1 1 -1.1 -1.2 -1.3 -1.4 1

Table 5.2 shows the parameters which form rules for the variation of the corresponding
physical parameters in Table 5.1. In this case these specify that throughout the modelling
run, the parameters corresponding to a ‘1’ are allowed to freely vary. This applies to all
parameters of the first system, and to those of the upward current sheet and current
magnitude of the second system. The parameters of the downward current for the second
system have negative numbers associated with them. A negative number indicates that a
constraint is to be applied. In this case, the rule is simply that a parameter will be made
identical to a parameter within another current system. The number of that system (1, 2,
etc.) must be given as the integral part of the rule parameter, while the number of the
parameter within that system to use is given by the decimal. For example, the rule
parameter for ‘Latitude Down 1° within the second system is -1.2. This indicates that the
latitude of the first point of the downward current in system 2 is to be numerically equal to
the value of the second parameter from system 1. That may be seen to be the latitude of
upward current from system 1. In this way the two systems are required to be joined in the
manner described in the preceding paragraph, at all times during convergence of the model.
If the rule parameters are not specified, they default to 1, allowing free variation of all
physical parameters. In that case, an initial system as specified in Table 5.1, with joined
currents, could be broken into two unlinked current loops if that would optimize the fit to
the data. The number of effective parameters, if all are given free variation, is larger than in
the constrained case, and with more freedom of variation, it is quite possible for a better fit
to be obtained in such circumstances. The choice to enforce a constraint is motivated by
the desire to have a physically realistic system, possibly at the expense of the goodness of
fit. Of course, judgment would have to be used. If a much better fit is obtained without
constraint, the possibility that the constraint is inappropriate must be considered.

The parsing language allows other constraints to be imposed at run time. Should it be
desired to hold a physical parameter fixed at its input value, a ‘0’ may be used as the
corresponding rule parameter. For example, if the ‘1’ for the current in the first system in
Table 5.2 were changed to a ‘0”, the input value of the current (0.196215 MA) would be
used throughout the modelling run, and the optimization would be done based on only the
geometric parameters. It was mentioned above that constraints could be introduced to fix
the relationship among various parameters, beyond simply making them identical. The
example mentioned was that it would be possible to specify a width for the electrojet. To
make this clearer, consider the Latitude Up 2 and Latitude Down 2 parameters in Table
5.1. If the corresponding rule parameters in Table 5.2 were changed from ‘1’ (for free
variation) to -1.2+5, and -1.5+5, respectively, then the Latitude Up 2 and Latitude Down 2
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physical parameters would be constrained to bé 5 degrees larger than Latitude Up 1 and
Latitude Down 1. In practice, this type of more complex restraint was rarely used, while
nonvariation or linking of parameters were used extensively. In practice, use of the simple
parsing language proved very effective in constructing joined systems or studying
variations based on a limited set of parameters. ‘

A very important application of constraint was in tying the north-south systems, with little
ground signal, to east-west systems having sufficient signal to allow solution. In this case
the geometric parameters of the systems were related to each other so that those of the
east-west system were those of the north-south, and the current in the north-south system
freely solved for. It should be noted that this does not mean that the position of north-south
system current flow was removed from the system and simply not solved for. Rather, the
combined fields of both systems would be matched to determine the geometric parameters,
which are constrained to be the same for both systems. Normally those parameters would
be more heavily constrained by ground observations due to the east-west part of the total
current flow, as these are larger.

c. Optimization

Before considering in detail the optimization by nonlinear least squares which is actually
used in Automated Forward Modelling, a brief discussion of optimization theory will be
presented. In this way it will be seen that there are specific reasons for the choice of that
method and for the Levenberg-Marquardt implementation used.

Rice [1983] discusses three ways in which approximation problems arise. One classical
example is in the approximation of mathematical functions. Although such approximations
are at the basis of the numeric computation required in digital computing, and thus
fundamental in that sense, this is not the approach relevant here. Similarly, smoothing and
analysis of data, his third class, may be used, but in his sense there is little ‘specialized
information’ available in this case. A more appropriate approach is found in his class of
problems involving ‘representation and compactification’ of data. Here ‘specialized
information’ is available which allows a fitting model to be proposed. Parameters within the
model may be varied to obtain an optimal model. This is the approach which is taken here
and referred to as ‘forward modelling’. But as opposed to merely the numerical analyst's
interest in ‘compactification’, we ascribe a physical meaning to a model which fits well. By
proposing a forward model in which the parameters correspond to physically measurable
quantities, we claim that the observed data resulted from a physical system having
characteristics analogous to those described by the best-fit model parameters.

Optimization attempts to deliver those best-fit parameters given the proposed model and
the data. ‘Closeness’ of the model to the data is measured by the norm [Rice, 1983], of
which many may be defined, and of which one must be chosen. To illustrate, consider the
approximation of a set of N points of data, y;, where i varies from 1 to N, by the function
F(ax;), or simply F(a), where a is the set of parameters appropriate to the model
represented by F and the x; are ordinates corresponding to the data values. The deviation of
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model from observation, with notation “y— F(a)”, is called the norm. The maximum
deviation or Chebyshev norm is simply “y— F(a)“oo = maxlyi - F(a,xi)l for1 <i<N

The sensitivity of this norm to the single largest deviating point in the data set is itself a
disadvantage and it is not easy to minimize, largely due to the discrete dependence on
whichever point that happens to be. Thus it is not suitable for our type of problem. More
responsxve to the entire data set is the norm representing average error, the least deviation

or L; norm, defined as ”y F(a)“ = Z'y, - F(a,x; )l This norm is less responsive to

outlier points, as is indicated by its dlscuss1on in ‘Numerical Recipes’ [Press et al., 1992]
under the heading of ‘robust statistics’. That it is also difficult to use in practice is indicated
by the fact that the sole example of its use given there is for fitting straight lines. In practice
the easiest norm to use is the least-squares or L, norm, defined by

ly-Fa@), =2 - Fa,x))" .

This norm represents the distance between fit and data in an N-dimensional space, and it is
clear that lessening the deviation of the fit function from the points reduces the value of the
norm. For both the L; and L, norms, it is possible to introduce weighting functions, which
may be chosen so as to make the norms for discrete data sets resemble integrals which
would arise through trapezoidal integration in continuous data, or may reflect the relative
reliability of each data point. In practice the weights enter as a multiplicative factor (say w;)
in each term of the sum used to form the norm, or as error weight terms inversely
proportional to some error value o;. This leads naturally to the consideration of the effects
of errors in the data in fitting and to a more rigorous reason to prefer a form of weighted
L, norm. Following Press e al. [1992], we consider that the data points y; are normally
distributed about what the ‘true’ model would give (with this distribution being due to
random errors). The probability of obtaining the measured data set of N points is then the
product of probability of each point comprising it:

gl

where Ay is an arbitrary constant reflecting a small interval in y within which the probability
density of y; is evaluated, and o; is the standard deviation of the distribution of data points.
Intuitively (and we are reminded in ‘Numerical Recipes’ that statistics is 7ot a branch of
mathematics) one must identify that set of parameters, considered as variables, which
would maximize the probability of the data set (which is given and not to be changed) to be
that represented by the parameters.
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Minimizing the negative of the logarithm of P will maximize P, and that will require the

quantity chi-squared (y?),
N 2
yl - F(a, Xi
2’2 = E (——-—Q]

i-1 Oi

to be minimized. This approach to justifying the use of %> minimization for maximum
likelihood estimation of parameters is based on the assumed normal distribution of data
errors. Even if that is not the case, the inverse errors may be considered as weights,
resulting in those points with the smallest errors receiving the highest weighting. It is also
possible that the errors are unknown, in which case they may be set to unity and 7’
minimization is equivalent to seeking the minimal L, norm.

In the foregoing there has been no discussion of the functional dependence of F(a,x) on
either the parameters a or the independent variable x. In practice, methods of solution of
the optimization problem depend on this functional form. Methods in which the
dependence on model parameters is linear are, not surprisingly, relatively amenable to
direct solution, while a more general dependence requires a more involved approach. We
will consider first how the linear case may be applied to magnetic data. The form of
solution presented will be recognized as being the basic form used in the AMIE technique
discussed in Section 4.c.

Assuming a linear dependence on the model parameters a does not imply any particular
functional dependence on x, that dependence entering in the M basis functions X(x) put
forward as part of the proposed model. Since the following discussion applies equally to
discrete and continuous ordinates, the subscript on x is sometimes omitted for convenience.
M should be chosen so that there are more data points than parameters being solved for if
one expects a unique best solution; in other words N>M. The quantity v=N-M is known as
the number of degrees of freedom in the problem, and it should be positive (note that v is
not to be confused with the error vector v discussed previously in connection with AMIE).
The model's form in this linear case is

M
F(a,x) = D axXi(x)
k=1

and the % becomes
\2

([ M
II y;- 2 ak X (x) {
l

L

(e J
where it is important to note that the basis functions appear evaluated at each data point
abscissa. In this equation, it is the parameters a, which are variables, the set of (x3,¥1)

N
=3
i=1
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observation pairs being preselected, and the basis functions Xi(x) by hypothesis being
independent of the parameters a. It is thus very clear that minimization takes place in the
space of the parameters. The solution of this optimization problem is called a /inear least
squares solution: it is linear because the dependence on each parameter is linear. The
dependence of the basis functions on the independent variable(s) may well be nonlinear.
That being the case, this approach is widely used in the representation of magnetic data by
functional expansions, such as in equivalent current fitting by J. K. Walker ef al. [1995], or
as an important part of the AMIE procedure (see Chapter 4). It is instructive to examine
how the optimal parameters are determined in linear least squares fitting, for comparison

with the nonlinear method used in this work. Letting A be the matrix with elements

Xi(

(%) . . . . ]
Aj; = =5 (the design matrix), and a weighted observation vector b, where b; = Cy,— the

N M ,

expression above becomes 12 = Z(bi - ZakAik )2 =(b- Aa)T(b — Aa), leaving the
i=1 k=1

vector a of coefficients (parameters) to solve for. This solution may be found by making

the derivative of % with respect to each parameter be zero. Taking the set of such

derivatives, one obtains the M normal equations (k=1,...,M) to be solved simultaneously:

N [ M ]
0= 2.2k vi~ 2a X(x) Xy (x) = (AT-A)-a-AT b,

1=1

To obtain a solution, a matrix must be inverted and there are several standard ways to
obtain such an inverse. The matrix form may be rearranged and symbolically solved to give
a compact expression of the solution, which is a=(A"A)'bA”. Since all variations in the
parameter space are linear in the parameters, the solution is particularly simple.

Linear inversion is suitable in cases for which a sum of weighting factors multiplying basis
functions allows good representation of data. The basis functions need not be orthogonal:
in a polynomial expansion, for example, they would not be. In many spaces an expansion in
orthogonal functions is possible; for near-Earth magnetic fields these expansions could be
in spherical harmonics as in the IGRF or in some modified spherical harmonic expansion as
has been detailed in Chapter 4 in discussing the KRM and AMIE techniques. As also
discussed there, such parameters in general do not have direct physical meaning, which is
considered here as a disadvantage. Referring to Section 5.a, we might also note that the
linear expansion needed for an eccentric dipole is very inefficient and that a more physical
model could have considerably fewer parameters. However, the dependence of the field on
parameters specifying the position of the dipole, as may be seen by referring to the
expressions for dipole fields in Chapter 1, would be highly nonlinear. Only the parameter
specifying the strength of the dipole would affect the observed fields in a linear fashion. The
cost of nonlinearity in the model is that a simple linear fitting approach no longer is
applicable.

126



Where the data have linear dependence on the parameters, ¥ has quadratic dependence on
them. Requiring its derivative to be zero restores linearity since the derivative of a
quadratic is a linear function. This yielded an algebraically soluble (by matrix inversion) set
of equations. One can equally do the same steps for arbitrary dependence of the model on
its parameters. The problem arises at the last step since the resulting analogue of the normal
equations will generally not be soluble. For this reason, most attempts to solve optimization
problems with nonlinear dependence on parameters are done by following gradients of x*
in the parameter space. Usually this must be done numerically. Some numerical methods
popular about 1970 are discussed in the reprint of the book Numerical Methods that Work
by Acton [1990] and in the second edition of Hamming’s [1973] well-known treatise. The
Fletcher-Powell method and its variants appear to have been most popular at that time. The
related Levenberg-Marquardt method is now the most widely used, since it “works very
well in practice and has become the standard’ [Press ef al., 1992, p. 683]. Both are variable
metric methods which attempt to find an optimal step size in parameter space, and both are
related to Newton’s method in the sense of following gradients toward a solution. Here the
Levenberg-Marquardt algorithm is described largely through putting together and
generalizing material contained in various places in Numerical Recipes in C [Press et al.,
1992]. The fact that the algorithm is the present-day ‘technique of choice’ and more
references, including several to its widespread commercial implementations, are found in a
recent summary [Lampton, 1997]. A concise description of the routine’s operation, more
coherent than that in Numerical Recipes is also given there, along with a test which finds a
strategy permitting more computational efficiency.

We assume that x° for a forward model which has parameters can be represented in the
space of those parameters as a differentiable function. This is the case for our magnetic
field models if using physically meaningful parameters. Then the x> function can be
expanded about any point aq in M-dimensional (as above) parameter space, to have a value
at another point a (i.e. for a different set of parameters) which is

2

M M
ri@)=yz (ao>+Z Gl (@i = 20) +%ZZ

i=1 j=1

|a (a aoi)(aj_aoj)+... .

This may be truncated within the domain of convergence and sufficiently close to a, to be
written more compactly in a vector form as

22 @) ~ y*(ag)-b-(a-ay)+1(a-ag)A(a-ay),

2
where b; = ——5:|ao = —(V)(Z)ilaO is the negative gradient vector of y” in parameter
1
2,2
space, and Aj; = M'ao is the so-called Hessian matrix, both evaluated at the point of
i“4;

expansion. This expansion is a quadratic form. It is well known that near an extremum
(where the gradient is zero) the quadratic form is the lowest non-trivial approximation to a
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function. We can see the family resemblance of the Levenberg-Marquardt method to
Newton’s method by the following considerations. From the expansion, the general form of

the gradient of %* can be readily calculated as V 7% (a)= A(a- a,)—b. Newton’s method

could be used to find the extremum in a seemingly straightforward way. If the gradient is
set to zero and the point a thus regarded as the extremum point, one simply has
A(a - ay) = b, with solution @ = a; + A'b. As with Newton’s method in one dimension,
this solution is to be regarded in an iterative sense, since the Hessian matrix and the
gradient vector b are both evaluated at the expansion point and may not be representative
of the behaviour of the function all the way to its extremum. If the expansion terms retained
are sufficient, the solution may be a better approximation to the extremum than was the
original point ay. Despite the fact that convergence of Newton’s method is slow, we are
likely better off now than with the initial guess. And in fact, since a quadratic form fits well
near an extremum, the approximation made above is probably now a better approximation,
leading to further improvement on the next step. This might lead one to expect that
Newton’s method would be an adequate approach to general non-linear %> optimization.
However, it may be that the initial guess is not in fact close enough to the solution for a
quadratic approximation to be valid. In that case, a linear function, rather than a quadratic,
is the lowest-order best approximation to the function near any point of expansion. The
gradient from that linear function can be followed downslope and in that manner a
minimum might be expected to be approached. The problem with this approach is that one
does not know how far to follow the gradient. It is this problem which the Levenberg-
Marquardt process attempts to solve, and in the process bring in the power of quadratic
fitting where appropriate.

Descent along the gradient can be examined through the linear approximation
lz(a) ~ xz(ao)— b-(a-ay) which is not useful in that form since a is unknown and
there is no particular way to find it. What we can claim is that if we had the right elements
for a and thus for the step a-a,, we could go down the slope to somewhere near the
minimum. We would know if we had done so since %” there would be less than at the
starting point. We also know that the step must be locally roughly parallel to the negative
gradient, that is, to b. This can be written for each component with an undetermined
constant which will be called (with some forethought) Aay, so that the equation for the I-th
component of the step is Aa) (a —a); = b;. Recalling that the quadratic approach led to
the equation A(a - a,) = b, we note some similarity of form between these two equations.
The first is equivalent to a diagonal matrix multiplying the step, whereas the second
multiplies by the generally non-diagonal Hessian. The dimensions of the elements of A and
of Aoy must be the same, so if we regard A as a dimensionless quantity, then the dimensions
of oy must be those of the elements of 4. Without any loss of generality, we can claim that
the oy could in fact be the diagonal elements of 4, and that if they are not, then A could be
adjusted so as to at least partially compensate. This rather loose approach allows the
combination of the two equations into one, with A to be determined. If & is the identity
matrix, we will regard the system A'(a —a,) = b as in some way containing the desired
solution, with 4f; = 4 (1+ 16 jj) the elements of the new combined matrix A". We must
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now formulate a method involving A which allows this new system to solve the
optimization problem. First we note that two extremes of value for A allow extraction of
the original two equations. For A=0 we recover the quadratic approach, while if A is very
large, A" becomes diagonally dominant and the linear case is effectively in force. For
intermediate values of A, the new system will have a solution analogous to the Newton’s
method case: @ = a, + A”"'b. By choice of A, one can cause this solution to respond to
being near a minimum (quadratic) or on a slope far from a minimum (linear). Control over
A will depend on the acid test of getting nearer the minimum: whether y” at the new a is
smaller than that at the initially-guessed value ao. If, for some intermediate value of A, x>
has not become smaller, then presumably one is on the slope and an increased value of A
would make the equation correspond better to the local situation. If (as desired), %> has
become smaller, then one is likely nearer to the minimum and a closer resemblance of the
modified system to a quadratic form is required. This can be arranged by reducing the value
of A. Ultimately, when the value is reduced to near zero, the pure quadratic form
‘appropriate to being near a minimum is used and convergence accelerates. Based on these
observations, the ‘recipe’ for use of the Levenberg-Marquardt technique given in
Numerical Recipes in C [Press et al., 1992, p. 684] may now be cited. Their version begins
optimistically with a rather low value of A: in practice an optimal starting value must be
determined by the user. The recipe is:

For a starting guess at the parameters ay, compute x(ao).

Pick a small value of A (they suggest 0.001 in hopes of starting near a minimum).
Solve A'(a-ag)=btogeta=a, + A""'b | then evaluate 1(a).

If x*(a)> % *(ap), one has failed to approach the minimum and must increase A
51gmﬁcantly (they suggest a factor of 10) and repeat step 3.

5. If y*(a)< y (ao), one is nearer to the minimum, so a is a better guess than a;. One
must replace ao in step 3 by a, decrease A to reflect being nearer the minimum, and redo 3.

AW N -

In practice, steps 4 and 5 must also include some criterion to determine when to give up.
This may be some tracking of successive values of % so that when it stops changing much,
one stops (which is the method recommended in Numerical Recipes), or simply counting
the number of iterations. The latter is a more practical method for implementation, but
should be coupled with examination of output at each step so that the ‘run’ of % is
monitored and has a reasonable behaviour (see Section 5.g). Lampton [1997] finds greatest
- efficiency in a simple problem when A is added directly to diagonal elements of the Hessian
matrix A. This is referred to as additive damping while the scheme detailed is called
multiplicative damping. The multiplicative approach is suggested when the parameters have
widely varying scales, and with the large number of parameters used in this study, that is
likely to be the case. In both additive and multiplicative cases, Lampton cites multiplicative
factors for rescaling A of 0.1 and 10 as commonly used, although his study indicates that
these should not be reciprocal factors for most efficient additive damping. In this study the
upward rescaling of A has been done with factors from 3 to 10 and reciprocals have been
used when it has been necessary to decrease A.
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This is an appropriate place for a brief further discussion of the Hessian matrix
2.2

Py

the parameters, there is no problem in taking successive derivatives with respect to the
parameters to obtain the functional form of the Hessian elements:

Aj = la - Since the form of x* is known, as are the forward model dependencies on

@1’2 N rﬁf’&;_ ) é,zy j
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In principle, this form of the Hessian may be used with the algorithm outlined above. In
practice, however, there are motivations for neglecting the second derivative terms. In the
application presented here, the derivatives are calculated numerically and this is
computationally expensive. This is equally the case if the minimization technique is applied
with analytical derivatives [Connors, 1993]. We may be able to convince ourselves that
second derivative terms should be small (this is certainly the case in linear modelling where
they are zero, but in that soluble case we do not need to use a gradient following
technique). Press et al. [1992] supply some more convincing arguments, including that the
term multiplying the second derivatives is the error of the model at each point which should
be randomly distributed with mean zero. They note also that second derivative terms can
be destabilizing while not affecting the final result, only the route to it. So in practice the
second derivative terms are rarely used in implementations of the Levenberg-Marquardt
algorithm. Without them, the algorithm is referred to as a ‘half-Newton’ method: with
second derivatives included it would be “full-Newton’.

We now proceed to discuss uniqueness of solutions in minimization with ground magnetic
data. Other practical aspects of using the Levenberg-Marquardt algorithm to solve
problems involving magnetic effects due to current systems are presented in Section 5¢g
below.

d. Uniqueness

The historic conflict in Space Physics about the nature of the basic current systems causing
ground disturbances has been alluded to. Useful insight into why non-uniqueness arises in
this case has been given by Fukushima [1969, 1976], although the often-quoted
‘Fukushima theorem’ is misleading for reasons given below. In Fukushima’s illustrative
example, field lines are considered to be vertical (a good approximation in the auroral
ionosphere), and the ionospheric conductivity is considered uniform and isotropic (a much
less correct assumption). The Birkeland current system, a loop consisting of downward
field-aligned current, an ionospheric path, and an upward field-aligned current, may have its
ground magnetic effects duplicated by a system entirely in the ionosphere with the same
ionospheric path and surrounding closure currents, as illustrated in Figure 5.5. Such a
system would be similar to the Chapman-Vestine equivalent system previously alluded to.
That these produce identical ground effects may be seen by considering the difference
currents between the two cases. These amount to the field aligned currents and closure
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currents. A set of closure currents may be made by considering each field-aligned current
to feed into the ionosphere and flow radially outward in that plane from the point of
contact. Each such system produces no ground effect. They are each symmetric about the
vertical axis, and this symmetry is at the heart of the ‘Fukushima theorem’. The integral
form of Ampere's law in this symmetric case states that 2nrB = i, I, where B (in the
azimuthal direction) at radius r is thus proportional to the total current (here I) inside that
radius. Below the ionosphere, no current flows and thus the ground-level B from this
current system is identically zero. Recalling that this current system is the difference
between the Birkeland and the Chapman-Vestine systems, one sees that there are no
magnetic signatures of that difference and hence no way to use sub-ionospheric
measurements to distinguish the two cases. Although the example is merely illustrative and
based partly on unrealistic assumptions, clearly the uniqueness of any model current system
put forward must be justified by other considerations than only the ground observations.
This simplified theoretical approach is entirely consistent with modelling results for
meridional systems as shown in Chapter 4. In the Fukushima example it is impossible to
determine the current flowing in the field-aligned currents from ground observations. In
practice, with poloidal model current systems, the problem is simply very ill-posed and
results must be interpreted with great caution and preferably in conjunction with auxiliary
~data.

Figure 5.5 Fukushima [1969] equivalent currents for a field-aligned current pair.
System (B) is the difference current between Birkeland system (A) and Chapman
system (C). (B) is equivalent to (B1) plus (B2), neither of which produce ground
magnetic fields.

(A) (B) (C)

— - ) +

More recently the use of simplified models (such as those discussed in section 4.a.3) by
modellers of satellite magnetic observations has led to the belief that the Region 1/2 current
systems, characterized by north-south paired sheets of field-aligned current joined by
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ionospheric currents, are basically solenoidal in nature and do not produce significant
ground effect. The simplified models produce their largest field in the region between the
field-aligned sheets and may be used for a reasonable interpretation of field-aligned current
based on observations there. Detailed modelling [Kisabeth, 1979], as discussed in Chapter
4, suggests that there may be ground perturbations observable from the Region 1/2
currents, particularly in the polar cap. Simplified models such as those of Fukushima or
those used in analysis of spacecraft data would not suggest this to be the case. The more
refined models might allow determination of the Region 1/2 current strengths from the
ground, but only poor localization of these currents. This is investigated below, in several
chapters, where the addition of Region 1/2 c?rrents appears to improve model fit.

In addition to the formal non-uniqueness\ demonstrated by Fukushima for magnetic
problems, there may be non-uniqueness i associated with the fitting problem. The
investigator searches for a 'best' fit indicating a close resemblance of the proposed model to
reality when the appropriate parameters are #hosen It may be relatively straightforward to
minimize in parameter space by finding a point where variations are zero but that does not
guarantee that the fit is 'best' as there may e>Lst other such points. Such points correspond
to local minima in the parameter space. With the effective changes in length scale in the
Levenberg-Marquardt technique, such local minima might be expected not to be a great
problem. It has been found through experience that a poor choice of initial scale parameter
can in fact lead to being caught in a local minimum. Given the large number of parameters
involved in magnetic modelling, particularly on a global scale, it is hard to be absolutely
certain that local minima are not hindering \solutlon Such uncertainty must be accepted
once minimization with more than a few parameters is attempted. As stated in Numerical
Recipes [Press ef al., 1992], “this kind of problem is generally quite difficult to solve”.
Quality of solution, mcludlng assessment of the likelihood of having attamed a global
minimum, must be quantitatively assessedll from the behaviour of y’ throughout the
solution, and from the reasonableness of the final parameters. It is similarly difficult to
quantify error bounds when a large number of parameters vary.

e. Error Bounds

\
The determination of errors in a fitting proLedure is difficult for several reasons. If the
fit has fully converged to a minimum there is no linear error estimate in at least some
parameters since the derivative of the error with respect to at least some parameters is
zero at a minimum. If there is also difficulty in telling whether a global extremum has
been reached, then there is no real way of knowing whether parameters which do not
have zero derivative indicate a slope toward the true solution or simply indicate error.
If there are a large number of parameters, as there are in geomagnetic modelling, these
limitations prevent much quantitative asses$ment of error.

\
Another aspect of error analysis is the suitability of the forward model itself If the
forward model does not contain elements capable of representing the data, then the
optimal model attainable through adjustmg\lts parameters cannot be as good as that of
a model which does contain those eleants An example would be an electrojet,
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aligned east-west. With such an alignment there is no Y component in the central
region. However, it is normal to find a north-south ionospheric current system
associated with an electrojet, and such a system produces an eastward perturbation
(although usually a small one compared to the X component due to the electrojet).
The east-west aligned electrojet forward model would not be an adequate forward
model to represent the Y component. Unsuitability of the forward model can also lead
to ambiguity. If an electrojet forward model is used with data only from a latitude
chain, both the presence of a north-south ionospheric current system and electrojet tilt
~ could cause a Y component to arise. It is difficult to discern and separate the effects of
these two sources of Y perturbation with a latitude chain. Thus a latitude chain would
lead to ambiguous results. The situation could be made clearer with a two-dimensional
distribution of stations (possibly two relatively nearby chains), in which case the
electrojet tilt would manifest itself as a change with longitude of the latitude of
maximal X perturbation (for example). In the absence of tilt, it would be inferred that
north-south currents had produced a Y component. With the known properties of
auroral currents, both sources of Y component (electrojet tilt and north-south current
flow) would likely be present. With data from a two-dimensional region, the causative
currents could be solved for, whereas latitude chain data alone would not permit this.

Yet another source of ambiguity of an electrojet model in a latitude profile is the
production of negative X perturbations beyond the ends of a longitudinally limited
westward electrojet (and positive X beyond the ends of an eastward electrojet). Such
perturbations lead to a spurious equivalent current, giving a false impression that there
is overhead ionospheric current. The presence of such perturbations was noted in the
modelling of Kisabeth [1972] and they are largely the effects of field-aligned current.
In Figure 5.6 such a modelling ambiguity is shown. The perturbation 10° east of the
end of a 1 MA 180° electrojet lying between 63° and 67° latitude has been modelled
by that from a centred electrojet (also of 180° longitudinal extent) whose latitudinal
borders and current intensity were varied, in the manner described later in this chapter,
to obtain an optimal fit. This represents an attempt to fit edge effects of an electrojet
by a an overhead east-west current. In other terms, an equivalent current is being
modelled through overhead current, where there is in fact none. It may be seen in the
figure that the general trend of the X perturbation has been very well represented, but
by an electrojet whose latitudinal borders (relatively well indicated by Z component
extrema) were at 58.3° and 71.5°. The inferred current was 0.39 MA rather than 1
MA. Consideration of only the X component could mislead one into thinking that
there is a rather wide (in north-south extent) electrojet overhead but the Z component
behaviour has clearly not been well modelled. Rather than having two extrema as is the
case for an east-west electrojet, the Z component has one maximum to the north and
an ill-defined minimum or simple approach to zero to the south, a result consistent
with that of Kisabeth [1972] for systems of smaller east-west extent. Not shown is the
large Y component perturbation of the off-end current system, which resembles the
forward model Z component. The forward model Y component would be zero in the
case an electrojet centred on the latitude profile meridian. To distinguish a situation
not well modelled by an electrojet, Z component perturbations must be considered. If
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these are small and Y component perturbations are large, the possibility of being off
the end of an electrojet must be considered, especially if the X profile is wide. In
global modelling as done in later chapters, the longitudes of current ends are allowed
to vary (unlike in this example) and this problem should not arise. One should be
aware of it in attempting to model perturbations in a meridian, however.

Figure 5.6 Perturbations off the end of a long electrojet, modelled by overhead
current. The X component (circles) and Z component (downward triangles) 10° east
of the end of a long electrojet have been modelled by a centred electrojet. The X fit is
shown by a solid line and the Z fit by a dotted line.
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f. Selection Criteria and Data Availability for Events

An initial criterion for event selection was availability of suitable magnetic data from widely
distributed stations. In particular, since the method uses mid-latitude stations to constrain
positions of field-aligned currents, the classic signatures of the substorm current wedge
(bays of duration in the tens of minutes) were sought on midlatitude records. In the final
selection, best magnetic data availability and that of other types of data for comparison
were found to be from CDAW events. Analysis of the CDAW 9 events by other
researchers is not complete and in that sense the analyses presented through automated
forward modelling are new for those events. The CDAW 9A event has been most
thoroughly modelled by other techniques and those modelling results are discussed for
comparison. The CDAW 9B event has been recently modelled by AMIE [B. Emery,
private communication, 1995] and global physical parameters are discussed as a
complementary aspect of that modelling approach.
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More recently, the GEM study of events from early November 1993 has supplied a suitable
data set. The generally increasing number of magnetic observatories and the recent ease of
interchange of data mean that near real-time inversion of magnetic data could be
undertaken with Automated Forward Modelling on a global scale. On a regional scale it
should be possible to actually implement real-time modelling. While political and economic
considerations which cause gaps to arise in the station distribution (for example the
collapse of the Soviet Union) can have adverse affects on any type of modelling effort,
there is a continuing trend toward better communication, as exemplified by the rise of the
World Wide Web (WWW). This suggests that near-real-time inversion could be done from
’ data sets which come from all parts of the globe. The limit on such a monitoring program is
the availability of suitable inversion routines, and this thesis presents one which could be
suitable for the task. However, this is demonstrated here using only older data sets.

Data was initially available through specialized CDAW accounts at the NASA Goddard
Space Flight Center, accessed by the SPAN dedicated network. Later, CDAW access was
through the Internet. The CDAW accounts were eventually superseded by a CD-ROM,
although still available for some data sets which were not included on it. Other data were
obtained through direct contact with researchers who are listed in the Acknowledgments,
and in particular through Barbara Emery at NOAA in Boulder whose gathered data sets
were kindly shared. The individual data sets included those of the CANOPUS network. In
the most recent months, geomagnetic and related data sets have been most readily accessed
through the World Wide Web, which includes search tools which sometimes prove helpful
in finding data sources.

g. Optimized Fitting of Magnetic Data

In the most general sense all selected events have in common activity in all of the auroral
zone current systems, some of it intense. Perturbations are in each case visible at available
mid-latitude stations. Depending on the rough position of the substorm current wedge as
evidenced largely by D-component bays at mid-latitude and H-component bays in the
auroral zone, stations were selected to give good coverage near the wedge. Distant stations
are retained to act as constraints on the current system but need not be as numerous as in
the area of rapid spatial change near the wedge. In practice about 30 stations were available
for CDAW-based runs; for some events supplementary data were used and the number of
stations could be increased to 80 or more. Regional studies can also be done based on 10
or less stations, and have proved particularly valuable if these stations form a latitude chain.
The method is completely flexible in terms of number of stations, but judgment must be
used to not allow the number of free parameters to become too great in relation to the
amount of data available.

The automated forward modelling routine may be used on any subset of magnetic
observations for which a reasonable forward model may be proposed. This can in
principle include near-Earth satellite data or indeed multipoint observations with the
aim of ascertaining the global configuration of the magnetosphere, but severe
limitations in the amount of data available prevent such use. In practice, for several of
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the events treated below only a global ground-based data set is available with sufficient
stations that the forward model may be used to explore details of the current
distribution. In others a more general picture must suffice due to insufficient data. In
this study, automated forward modelling of satellite perturbation data has not been
undertaken and the few passes available are analysed roughly by inspection. In cases
where enough data are available, the method may be applied globally and regionally
and with models which are fully three-dimensional or essentially two or even one-
dimensional. In particular, latitude profiles have formed the basis of many earlier uses
of forward modelling [Kisabeth, 1972], and may be readily treated by the new
automated technique. A polar-orbiting satellite pass has many similarities to a latitude
profile but responds to an associated, but different, current system from that seen on
the ground. Both are essentially one-dimensional situations and care is needed in
comparing to the three-dimensional modelling. In both satellite and ground-based
cases latitudes of current system boundaries are determined and latitude forms the
important single independent dimension. In principle tilt of the current system could be
determined and this would involve the orthogonal dimension. A forward model could
even be proposed which incorporated field-aligned current and was essentially three-
dimensional. Obviously, such an approach would have to be used with care not to
overinterpret the situation. The effects of field-aligned current can resemble those of
tilt of a current system and the ambiguity would have to be resolved by other means.
One could also be led to interpret changes in latitudes of current system borders as
indicated by one-dimensional modelling in a direct fashion where this is not
appropriate. It is impossible to distinguish, in such a case, between actual latitudinal
motion of the current systems, and possible east-west motion of a tilted current
system. Once again, other means must be called in to resolve the ambiguity.

Having seen that considerable ambiguity can accompany one-dimensional modelling
using latitude profiles, it may be useful to consider its advantages. Actual current flow
through a meridian is readily established by such modelling if the latitudinal coverage is
sufficient. In terms of automated modelling one can start with a poor fit to the data (as
an initial condition, possibly derived by some very rough procedure which is readily
automated) and arrive at a good fit. This is largely due to the reduced dimension of the
modelling space. The three-dimensional approach has a very complex topology in a fit
parameter space having typically about 30 dimensions. Initial conditions too far from
the “actual solution” may not arrive at a globally optimum situation. Having reliable
local conditions is a very effective way of constructing useful initial conditions which
are derived from the data. In this way one can use initial one dimensional modelling
along a meridian to form initial conditions for global modelling.

The use of weighted x* (chi-square) as a fitting criterion implies that weights must be
chosen. The absolute value of the weights can easily be seen to be of little importance as
long as machine precision limits are not compromised by their choice. The relative values
of weights determines to what extent goodness of fit at various stations creates a
depression in parameter space. The programme attempts to find minima and will ‘steer
into’ such depressions. Since auroral zone stations have larger perturbations (i.e. signal) but
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the events treated below only a global ground-based data set is available with sufficient
stations that the forward model may be used to explore details of the current
distribution. In others a more general picture must suffice due to insufficient data. In
this study, automated forward modelling of satellite perturbation data has not been
undertaken and the few passes available are analysed roughly by inspection. In cases
where enough data are available, the method may be applied globally and regionally
and with models which are fully three-dimensional or essentially two or even one-
dimensional. In particular, latitude profiles have formed the basis of many earlier uses
of forward modelling [Kisabeth, 1972], and may be readily treated by the new
automated technique. A polar-orbiting satellite pass has many similarities to a latitude
profile but responds to an associated, but different, current system from that seen on
the ground. Both are essentially one-dimensional situations and care is needed in
comparing to the three-dimensional modelling. In both satellite and ground-based
cases latitudes of current system boundaries are determined and latitude forms the
important single independent dimension. In principle tilt of the current system could be
determined and this would involve the orthogonal dimension. A forward model could
even be proposed which incorporated field-aligned current and was essentially three-
dimensional. Obviously, such an approach would have to be used with care not to
overinterpret the situation. The effects of field-aligned current can resemble those of
tilt of a current system and the ambiguity would have to be resolved by other means.
One could also be led to interpret changes in latitudes of current system borders as
indicated by one-dimensional modelling in a direct fashion where this is not
appropriate. It is impossible to distinguish, in such a case, between actual latitudinal
motion of the current systems, and possible east-west motion of a tilted current
system. Once again, other means must be called in to resolve the ambiguity.

Having seen that considerable ambiguity can accompany one-dimensional modelling
using latitude profiles, it may be useful to consider its advantages. Actual current flow
through a meridian is readily established by such modelling if the latitudinal coverage is
sufficient. In terms of automated modelling one can start with a poor fit to the data (as
an initial condition, possibly derived by some very rough procedure which is readily
automated) and arrive at a good fit. This is largely due to the reduced dimension of the
modelling space. The three-dimensional approach has a very complex topology in a fit
parameter space having typically about 30 dimensions. Initial conditions too far from
the “actual solution” may not arrive at a globally optimum situation. Having reliable
local conditions is a very effective way of constructing useful initial conditions which
are derived from the data. In this way one can use initial one dimensional modelling
along a meridian to form initial conditions for global modelling.

The use of weighted %* as a fitting criterion implies that weights must be chosen. The
absolute value of the weights can easily be seen to be of little importance as long as
machine precision limits are not compromised by their choice. The relative values of
weights determines to what extent goodness of fit at various stations creates a depression
in parameter space. The programme attempts to find minima and will ‘steer into’ such
depressions. Since auroral zone stations have larger perturbations (i.e. signal) but also more
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‘noise’ in the sense that deviations from an ideal current system (as presented by the
forward model) are nearby and therefore ‘seen’, they are weighted less than are mid-
latitude stations which have smaller perturbatlons but also do not respond significantly to
small irregular auroral zone variations. In practice the mid-latitude signal is about one-tenth
of that typical in the auroral zone. To obtain about the same relative errors in the weighted
X, they are weighted about three times as much as are auroral zone stations. Sub-auroral
zone stations received a weight about two times that of auroral zone stations. Depending
on their strength and desire to attempt to model them, polar cap signals were weighted
either the same or less than auroral zone stations. Figure 5.7 shows a practical way of
determining that station weighting has been done properly by illustrating a case where it
was not well done. The behaviour of x* with station number (out of 83) is shown from an
actual modelling run. It may be seen that it shows step-like behaviour with rather less
variation in between the steps. This suggests that the stations at the steps are contributing
too much to y° and that those elsewhere may not be contributing enough. Such a diagram
can be used to guide the choice of weights. It is not entirely clear that the weights would
need to be changed in even such a case, however. The ” will depend on deviations of the
model fields from the observed fields, and these latter can vary enormously from station to
station. In an early stage of the fitting process, a pattern such as that shown might even be
expected and desired. Toward the end of the process, the % pattern should be smoother.
Also, these considerations will affect the efficiency of the fitting computations, but in
principle a fit can be reached despite poor weighting.

Figure 5.7 Behaviour of y” as a function of station number.
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To demonstrate operation of the fitting algorithm, a test with a simple current system is
first described. The fitting parameter A will be shown explicitly as it is changed by the
algorithm according to the steps described in Section 5.c. The simple system consists of
downward current along a meridian, ionospheric flow at constant latitude in a belt of finite
latitudinal width, and upward current flow along a second meridian, as illustrated in Figure
5.1. Due to the simple nature of the system, parametrization in terms of longitudes, central
latitudes, and latitudinal width of the current systems was used. In most other work
presented here, the parameters (as presented in Table 5.1) are instead the geometric
corners of the quadrilateral region delimiting current flow in the ionosphere. Table 5.3
shows the parameters of the test system and those of the initial guess. This current system
is rather short in longitudinal extent, only 20° and is of 5° north-south extent in the
ionosphere, centred at 70°. This is very similar to current systems studied by Kisabeth
[1972] and illustrations are given there of the perturbations from such a system. The guess
deviates by several degrees in all parameters except one of the longitudes of upward
current. The guess has about one sixth the total current of the target solution.

Table 5.3 Parameters of test (target) system and initial guess
Long ‘Down Lbng Down | Latitude | Width | 'Long Up1 | Long Up2 | Latitude | Width Current
Down | Down Up. . 1 Up MA)
Target 40 40 70 5 20 20 70 5 0.100
Guess | 42 50 652 |8 25.2 20 66 11 0.016

Figure 5.8 Chi-squared on linear scale throughout test convergence
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Figure 5.8 shows the values of %* throughout this short run. Stations were selected on a
grid covering the current system with one degree spacing in latitude, two degree spacing in
longitude, and equal but arbitrary weighting was used at each station. ” is thus an arbitrary
number and its behaviour is more important than its actual value. It is seen to have values
which initially remain as high as the starting value and after 5 iterations begin to decrease,
going down by a factor of 10 after 4 more steps and then becoming too small to easily see
on this figure.

Figure 5.9 better illustrates the behaviour of ” late in the convergence of this test case. It
may be noted that the convergence, once it actually starts after step five, is better than
exponential (which would be a straight line in this logarithmic graph). Also, x> goes to
extremely low values, reflecting the fact that there is no noise in this test run and that the
forward model’s parameters are exactly those of the ‘data’ and thus can be optimized
almost arbitrarily well.

Figure 5.9 Logarithmic graph of x* in test convergence.
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To better understand the mechanics of algorithm operation, the behaviour of the scale
parameter A must be examined, and is shown in Figure 5.10. As mentioned in Section 5.b,
the authors of Numerical Recipes [Press et al., 1992] seem to take a rather optimistic view
of how close one is starting to a minimum, and recommend using a rather low value of A
initially so as to exploit the curvature (quadratic) aspects near one. In this case, initial
parameter values are in fact rather far from those of the target, as is in part evidenced by
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the huge decrease in values of ° through the run. At the initial stages, one is far from a
minimum and the quadratic terms, brought into play by an inappropriate choice of the scale
parameter, prevent moving toward the minimum, rather than helping. This is not directly
seen in the graphs but may be easily inferred by recalling that if the proposed new
parameter vector results in a higher ” value, then it is rejected, and A scaled up by a
significant factor. The retention of a constant y” for the first four steps as seen in Figure 5.9
or 5.10 simply means that the proposed new parameters, derived from solution of the A’
matrix as detailed in Section 5.b, were rejected, and the old ones, with the accompanying
value of x’, retained as the so-far-best guess. It may be easily deduced by inspection of
Figure 5.10 that the ‘significant’ factor by which A was scaled up was 10. Once A has been
adjusted to a value of one, at step 5, the ° begins its steady decline, and A is also adjusted
downward, appropriately now as the new guesses are increasingly close to the minimum.
Once ‘over the hump’ of choosing the right scale factor, the solution never slows down.
The algorithm can rescale A upwards once more if progress is not sufficient in some less
ideal case, in hopes that such a re-emphasis on linear terms helps out.

Figure 5.10  Value of scale parameter A during convergence of test case.
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The steady decrease of x* might lead one to expect that the physical parameters would all
show similar steady improvement toward their final target values. In the case of the current,
perhaps because it is a linear parameter in the system, this is indeed the case, as is shown in
Figure 5.11.
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Figure 5.11  Convergence of total current in system from poor to good value.
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This parameter, initially far too small, is essentially doubled at the first effective step, and
after that increases steadily, especially from step 8 to step 9 after (as will be seen) the other
important system parameters of current latitudinal width and latitude have been brought
near their target values. These nonlinear parameters vary in a more complex way during the
optimization, as may be seen in Figure 5.12, which shows the latitudinal width of the
system. Here also, nothing happens until the first effective step (step 5) and then changes
occur in what we might initially consider to be the wrong direction, with the current widths,

already too large in the guesses, made even larger. In a multidimensional nonlinear system
it is sometimes difficult to visualize what is happening, which is a large part of the reason
that we need algorithms like the one under discussion to help us navigate, but here we can
usefully speculate. The initial latitudes (see Figure 5.13) were initially too low, and in fact
the initially guessed system hardly even overlaps the target system. These are brought in the
correct (northward) direction at the first step, the widths were increased, and the current
was increased. The net result is that on average less magnetic perturbation was felt south of
the target system where there was too much from the initial guess, more in the vicinity of
the target system where there was initially too little, and the chi-squared decreased
although some individual parameters might have become ‘worse’. It is left to later steps
(better due to being nearer the minimum) to correct this.
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Figure 5.12  Uneven convergence of system width parameters toward target values.
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Figure 5.13  Variation of latitudes of centre points of up and down current sheets
during convergence.
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The latitudes of the midpoints of downward current sheets at either end of the overall
system are shown in Figure 5.13. Some overshoot occurs, particularly at the ‘up-current’
end. Although the target system is symmetric, the initial guess is not, and the nonlinear
behaviour seems to have magnified that asymmetry at intermediate steps. By step 8 the
latitudes seem to have reached values close to the target values. At the following step, both
the widths and the currents make large changes to near their final values. It seems, not
unreasonably, that the very important parameter of latitude had to have about the right
value before the current and width can settle in on their best values. The various longitudes
in Figure 5.14 reinforce the idea that overshoot can occur and that at intermediate steps
certain individual parameters can get ‘worse’ before getting better. The astute reader will
have remarked that, in Table 5.3, the initial parameter for ‘Up Longitude 2’ was in fact set
to the known value of the target solution. It may be noted in Figure 5.8 that this ‘fix’ seems
quite irrelevant: this value deviates widely from the initial (i.e. correct) value at steps 6 and
7, returning and staying near the target value at step 8. One’s concepts of how to converge
on a good solution must be relaxed considerably. This is one of two related problems faced
in attempting to solve this sort of optimization manually [Connors ef al., 1991]. Changing
individual parameters in the solution space can be quite misleading in itself, and the
calculation of gradients in the space to guide such a choice (either explicitly or by
‘inspection’) is very tedious. Letting a proven algorithm do the work, with of course
some inspection, is much more productive.

Figure 5.14  Variation of longitudes of extremal points of current sheets during
iterations.
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The above discussion used one current system and illustrated changes in parameters during
a solution, including the changes in the %° and scale parameters which guide the behaviour
of the algorithm. Due to this simplicity, once effective convergence started, it continued
until convergence to the target resulted. It was stated that the algorithm can adapt to cases
in which this does not happen: in effect that a certain amount of navigation around
‘comners’ in the solution space can be done. An example of this and of a further algorithmic
step to double-check the optimality of a solution is now given. From an actual inversion of
the data discussed in Chapter 6, Figure 5.15 shows a parameter which is used to track
progress of a run and in practice decides when a run is finished. This parameter is a count
of convergence failures in the run up to that point. With real data, the forward model will
never be perfect, as it was in the simplified example above, and x> will not become
arbitrarily small. Rather, the minimum of x> will have some finite value and once at that
value, if it corresponds in fact to a global minimum, further reduction is not possible. Thus,
further attempts at convergence will fail. For this reason it is useful to keep track of the
number of failures to converge, since that may indicate that it is not productive to continue
to attempt to optimize. It may also occur that there is never any improvement over the
initial guess, and in that case the whole initial guess may need modification. Once the
number of failures to converge exceeds five, the routine is once (only) restarted with a
much larger value of scale parameter to ensure that one is not trapped in a local minimum,
embedded within a larger scale parameter space slope which leads to a global minimum.
After this check, and possible further convergence resulting from it, the result is accepted
as a potential solution and calculations stop.

Figure 5.15  Count of convergence failures in a full data run of the optimization.
Decimal part of iteration number on ordinate is the number of iterations done.
Abscissa indicates number of failures to converge since initializing the scale length.
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Figure 5.16  Scale length parameter A in an actual program run. Ordinate labeled as
in Figure 5.15. A decreases each time convergence succeeds, increases on failure.
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The convergence failure count is best interpreted in conjunction with the behaviour of scale
length shown in Figure 5.16. The initial lack of convergence failure means that useful
convergences were being obtained; that is, that the new parameter values were closer to
the minimum than the guesses preceding them and thus were accepted. The scale length in
such a case is to be decreased and this is seen to be what took place. Experience has shown
that in these problems the initial guess is not very good and that a large value of A (in fact
10) is appropriate. The best value for the ‘large factor’ by which A must be scaled proves
to be 3. Improvements continued to be made, and no failures recorded, until step 8. At this
point a failure to improve x> occurred, and A was scaled up, to a larger value in case
convergence failure occurred due to being on a slope rather than actually near a minimum.
This did not improve the situation except at step 12, and after 5 such attempts it was
concluded that one is in fact near the optimal solution. In case the scale is still not large
enough to detect being in a local minimum on the edge of a large slope in parameter space,
a new set of iterations is attempted with the much larger value of A that was initially used
with the first guess. This does produce a small improvement, so the failure count in this
second run through remained 0 and A was decreased as per the recipe. However, no further
improvement occurred even when A, after one failure, was once more increased in value.
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Weighted Chi Squared

After a string of five failures to reduce > with yet larger values of A, it may be safely
concluded that the solution had been attained since the slope in y> space on many scales
was zero. Figure 5.17 shows the initial large decline in %’ and its subsequent flattening
when near the optimal set of parameters. The set of parameters at the end of such a run
may with some confidence be accepted as being a best fit of the forward model in use to
the data.

Figure 5.17
Figure 5.15.
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As has been discussed above, generally nine parameters are needed to characterize each
toroidal current system, and generally three systems are used to represent global
perturbations. Thus, at least 27 parameters are needed to represent the data. At least one
other (‘Dy-like’) parameter must be added to represent low latitude perturbations, likely
due to external current sources. There may also be free parameters associated with the
poloidal current systems, although in most cases one would use colocation (see above) to
reduce the number of parameters associated with these systems. By constraining the
geometric parameters to be close to those of the toroidal systems, only the current in
poloidal systems remains as a free parameter. This means that 31 parameters should suffice
to represent the global current systems. In principle, with three components per station,
about 10 stations should suffice (with essentially a one-to-one parameter remap from
magnetic data space to current parameter space) to determine these 31 parameters. In
practice, for global modelling, more than 30 stations must be used in order to have enough
data to determine these parameters with some degree of accuracy in global modelling.
Although each station provides 3 components of data, some stations are not well placed
and contribute little information. In the most complete global modelling presented in this
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work, 80 or more stations are used. The good fits attained imply an economization by
about a factor of 8 through use of current parameters as opposed to the raw data. On the
other hand, the 31 (or more) dimensional current parameter space must be considered
‘large-dimensioned’ in several practically important fashions. Visualization of data and
model parameters in this space is itself a challenge. Further, it is obviously difficult to be
sure that any extremum found in the space is truly a global extremum. Even crude tests of
the extrema, such as taking steps away from a purported minimum, are difficult given the
large dimensionality of the space. For these reasons, it has been pointed out that one must
carefully survey the steps taken to get to a minimum, and the overall behaviour of the

_programme while it does its optimization. Further, one must understand the operation of

the Levenberg-Marquardt algorithm, as described above, to interpret the behaviour. It has
been shown that one should not attach too much importance to the changes in individual
parameters as the optimization proceeds, provided that both x* decreases in a systematic
fashion, and that the final solution produces perturbations which are comparable to the
input data. As a final example/test in this section, a ‘poor’ initial guess is used with an
idealized yet realistic forward model. This demonstrates that an initial guess can be far from
the target and that the routine can still obtain convergence, in other words, it is a
demonstration in principle that the method under discussion works well on the type of data
available.

Figure 5.18  x* throughout convergence of a realistic but ‘poor’ initial model.
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In this test, 27 parameters were used to simulate the Hall currents associated with an
idealized auroral oval current system consisting of morning and evening sector electrojets
and an active westward electrojet in the midnight sector. Neither a Dg-like parameter nor
poloidal currents were used in this illustrative example. The surface magnetic fields were
calculated at actual magnetic observatory locations using the target parameters. These
‘observations’ were then used as input to the Automated Forward Modelling routine. Since
the main aim here is to demonstrate that a poor initial guess leads to convergence even with
many model parameters (in other words that the AFM routine works in the ideal case), the
run of % throughout convergence is shown as Figure 5.18. Much as in the single current
case (see Figure 5.9), there is seen to be rapid convergence.

Figure 5.19 shows a global view of current systems put forward as a reasonable
representation of the auroral oval currents, yet one which deviates considerably from the
target system. The very large initial values of % seen in Figure 5.18 attest to the fact that
the two systems are considerably different. Station weightings varied in the calculation of
x> much as in the real calculations detailed in the following chapters, with greater weight
given to mid-latitude stations. As mentioned above, the scale parameter is of importance in
attaining a solution: when this parameter was set initially to 0.001, no progress was made
toward solution. Such a small value is suitable if one knows that the parameters of the
initial forward model are very close to those of the solution [Press ef al., 1992]. Here that is
not the case and the curvature terms which are emphasized at small values of the scale
parameter dominate when it is not appropriate for them to do so. Progress to solution was
obtained by setting the initial scale parameter to 10. This is also the starting value for this
- parameter which was generally used in applying AFM to real data. The test case solution
after success of AFM is presented as Figure 5.20. Currents solved for were roughly a
factor of two changed from those in the initial model, and the latitudes are seen to be
considerably higher than those of the initial guess (Figure 5.19). The active midnight sector
has been found to be at much different longitude that has that of the initial guess, and the
noon sector downward current configuration is also considerably different. The final
solution’s parameters differed only at the hundredth of a percent level from those of the
target system, consistent with the very small ¥* values attained. This constitutes a
convincing demonstration that the AFM method works well in the mathematical sense: it is
capable of inverting data supplied to it. Further, in this ideal case, the routine is seen to be
efficient in terms of number of steps taken to do the inversion.
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Figure 5.19

Initial current configuration for realistic global test model.
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h. Comparison with Other Data about the Events

In several cases in what follows (Chapters 6, 7, and 8), images from a spacecraft (Viking)
allow rough determination of particle precipitation regions. Comparison of these regions
with those deduced from the magnetic data are particularly useful. In all cases, data from
various other spacecraft are available and are used to discuss the larger context of the
events, and to a limited extent implications for mapping of field lines. DMSP magnetic and
particle data can be used to verify results due to the known colocation of the Hall
electrojets which produce most of the ground signal and the Region 1/2 field-aligned
currents which produce the perturbations dominant in near-Earth space. In certain cases it
is of particular interest to determine whether or not a substorm onset occurred and the
deciding factor then may be other signatures of onsets such as near-tail dipolarization or
particle injections.

The various types of other data available were discussed in Chapter 3. The forward
models presented here are computed using only magnetic field data. Other forms of
data have not been incorporated directly into the modelling, but rather used to provide
a broader context to discussion of results. In principle the AMIE method (see Section
4.b) allows incorporation of certain other data since the model which is part of that
inversion scheme is more physically complete than that used here.
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