Understanding histone H1 binding mechanism through model comparison and FRAP experiments

Gustavo Carrero

Athabasca University

ICIAM 2011, Vancouver, Canada. July 20, 2011

Acknowledgements

 Carlos Contreras (Universidad Simón Bolívar)

 Minalla Villasana (Universidad Simón Bolívar)

 Michael Hendzel (University of Alberta)

 Athabasca University Research Incentive Grant (AU-RIG)

< 口 > < 同 >

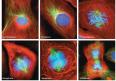
Outline

Biological Background

Models

Model Comparison

Discussion and Future Work


C. Contreras, M. Villasana, M. Hendzel, G. Carrero Histone H1 binding mechanism

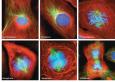
A ►

(E)

Histone H1 or Linker Histones

\blacktriangleright Length of all DNA in an adult human cell ~ 2 mts

x 1000 times


(日) (同) (三) (三)

э

2 kms of DNA

Histone H1 or Linker Histones

 \blacktriangleright Length of all DNA in an adult human cell \sim 2 mts

x 1000 times

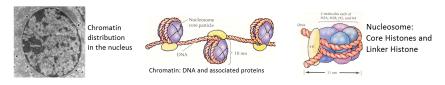
2 kms of DNA

• There are \sim 10 trillion (10 imes 10¹³) cells in the body

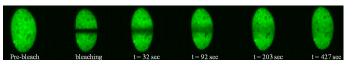
 ~ 20 trillion mts. of DNA in the human body

A D

Histone H1 or Linker Histones

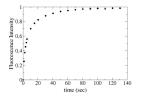

How do 133 AU of DNA fit in our body? How is the DNA packed and organized in the cells?

Histone H1 or Linker Histones

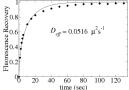

How do 133 AU of DNA fit in our body? How is the DNA packed and organized in the cells?

With the help of histones!

DNA is wrapped around core histones and locked by linker histones.



FRAP Experiments


GFP (Green Fluorescence Protein)

$$\frac{\partial}{\partial t} u(x,t) = D_{eff} \frac{\partial^2}{\partial x^2} u(x,t)$$

$$R(t; D_{eff}) = \int_{\Lambda} u(x,t) dx$$

$$\Lambda = \text{photobleached region}$$

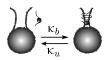
< 同 ▶

Outline

Biological Background

Models

Model Comparison

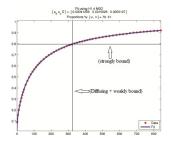

Discussion and Future Work

C. Contreras, M. Villasana, M. Hendzel, G. Carrero Histone H1 binding mechanism

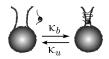
A ►

Image: Image:

One bound subpopulation model (simple model)


$$\frac{\partial}{\partial t} u(x,t) = D \frac{\partial^2}{\partial x^2} u(x,t) - k_b u(x,t) + k_u v(x,t) ,$$
$$\frac{\partial}{\partial t} v(x,t) = k_b u(x,t) - k_u v(x,t)$$

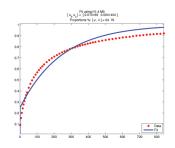
I. Variable Diffusion:


$$R(t; D, k_b, k_u) = \int_{\Lambda} [u(x, t) + v(x, t)] dx$$

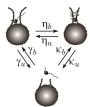
Proportion of bound population: $P_b = rac{k_b}{k_b + k_u} pprox 21\%$

Proportion of unbound population: $P_u = \frac{k_u}{k_b + k_u} \approx 79\%$

One bound subpopulation model (simple model)


$$\frac{\partial}{\partial t} u(x,t) = D \frac{\partial^2}{\partial x^2} u(x,t) - k_b u(x,t) + k_u v(x,t) ,$$
$$\frac{\partial}{\partial t} v(x,t) = k_b u(x,t) - k_u v(x,t)$$

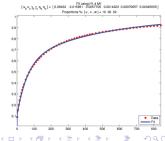
II. Fixed Diffusion:


$$R(t; k_b, k_u) = \int_A [u(x, t) + v(x, t)] dx$$

Proportion of bound population: $P_b = \frac{k_b}{k_b + k_w} \approx 76\%$

Proportion of unbound population: $P_u = \frac{k_u}{k_b + k_u} \approx 24\%$

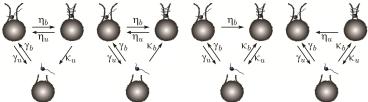
Two bound subpopulations model (extended model)

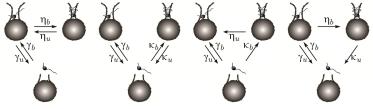

$$\begin{split} \frac{\partial}{\partial t} u(x,t) &= D \frac{\partial^2}{\partial x^2} u(x,t) - k_b u(x,t) + k_u v(x,t) - \gamma_b u(x,t) + \gamma_u w(x,t) ,\\ \frac{\partial}{\partial t} v(x,t) &= k_b u(x,t) - k_u v(x,t) + \eta_b w(x,t) - \eta_u v(x,t) ,\\ \frac{\partial}{\partial t} w(x,t) &= \gamma_b u(x,t) - \gamma_u w(x,t) - \eta_b w(x,t) + \eta_u v(x,t) , \end{split}$$

 $R(t; k_b, k_u, \gamma_b, \gamma_u, \eta_b, \eta_u) = \int_{\Lambda} [u(x, t) + v(x, t) + w(x, t)] dx$

Proportion of strongly bound population: ${\sim}52\%$

Proportion of weakly bound population: $\sim 38\%$


Proportion of unbound population: ${\sim}10\%$


Can we be more specific about the binding mechanism involving weakly and strong interactions?

Nested Models

I. One less interaction:

II. Two less interactions:

A B > A B >

Can we favor one of these mechanisms on the basis of FRAP experiments?

Outline

Biological Background

Models

Model Comparison

Discussion and Future Work

C. Contreras, M. Villasana, M. Hendzel, G. Carrero Histone H1 binding mechanism

A ►

< ∃ > < ∃ >

э

Akaike Information Criterion (AIC)

 $AIC = 2\mathcal{LL}(\hat{p}) - 2n_p$;

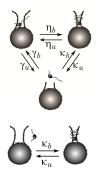
Used when the models are not nested

p: set of parameters
 n_p: number of parameters
 LL(p̂): log of the likelihood L(p)
 L(p): Likelihood function (probability to find the given data)
 p: maximum likelihood estimator (parameters that maximize L(p))

▶ The larger the *AIC* the better the model

Likelihood Ratio Test (LRT)

 H_0 : M_0 fits the data well, vs H_1 : M_1 fits the data better

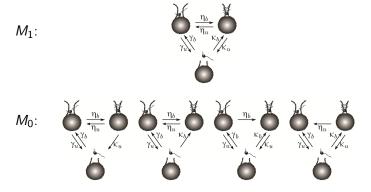

• M_0 is nested within the model M_1

- The statistics $\lambda = 2(\mathcal{LL}(M_1) \mathcal{LL}(M_0))$ is χ^2 -distributed
- $\mathcal{LL}(M_1)$ and $\mathcal{LL}(M_2)$: log likelihoods of model M_1 and M_2
- One calculates a χ² value given a confidence level and if λ is higher than that value then the null hypothesis is rejected (i.e., M₁ is a better model)

- - E - - E

Model Comparison for Nested Models (general model vs simple model)

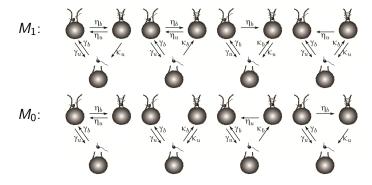
 M_1 :



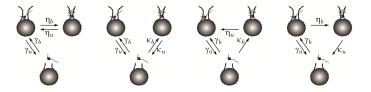
 M_0 :

The null hypothesis H_0 is rejected, i.e., The general model M_1 is favored using the LRT!

Model Comparison for Nested Models


(general model vs one less interaction models)

The null hypothesis H_0 cannot be rejected, i.e., all nested models M_0 are favored using the LRT!


Model Comparison for Nested Models

(one less interaction models vs two less interactions models)

The null hypothesis H_0 cannot be rejected, i.e., all nested models M_0 with two less interactions are favored using the LRT!

Model Comparison for Non-nested Models (with two less interactions models)

The Akaike Information Criterion (AIC) is not significantly different in any of these models. Thus, none of these models are favored!

Outline

Biological Background

Models

Model Comparison

Discussion and Future Work

< 同 ▶

A B > A B >

э

Discussion and Future Work

- Even though the possibilities for binding mechanisms were reduced, AIC did not allow us to distinguish one final model among the ones considered.
- Suggestions?
- The results require the development of experiments that could validate one of the two less interactions models over the others.
- We plan to use a resulting model (when found) to assess the effect of post-translational modifications on the biding affinity of histone H1 to the chromatin structure.

THANK YOU!

æ

<ロト <部ト < 注ト < 注ト

C. Contreras, M. Villasana, M. Hendzel, G. Carrero Histone H1 binding mechanism