
Coordinating Networked Learning 1

Coordinating Networked Learning Activities with a General-Purpose Interface

John Brecht
SRI International

Chris DiGiano
SRI International

Charles Patton
SRI International

Deborah Tatar
Virginia Tech

S. Raj Chaudhury
Christopher Newport University

Jeremy Roschelle
SRI International

Krista Davis
SRI International

Coordinating Networked Learning 2

Abstract

Classrooms equipped with wirelessly networked tablets and handhelds can engage students in

powerful collaborative learning activities that are otherwise impractical or impossible. However,

the system must fulfill certain technological and pedagogical requirements such as tolerance for

latecomers, supporting disconnected mode gracefully, robustness across dropped connections,

promotion of both positive interdependence and individual accountability, and accommodation

of differential rates of task completion. Two approaches to making a Tuple Space-based

computer architecture for connectivity into an inviting environment for the generation and

creation of novel coordinated activities were attempted. One approach made the technological

“bones” of the system very clear but assumed user vision of the complex goals and settings of

real education. The more satisfactory approach made clear how Tuple Spaces matches the

complex goals and settings of real education, but backgrounded technical complexity. This

approach provides users with a system, Group Scribbles, which may inspire a wide range of uses.

Coordinating Networked Learning 3

1. Introduction

Classrooms equipped with wirelessly networked tablets and handhelds can engage students

in powerful collaborative learning activities that are otherwise impractical or impossible. . A

networked classroom can support real-time formative assessment for teachers (Abrahamson,

1999) as well as activities such as interactive role playing, joint concept mapping and group

critiquing. To date, research and development in mobile learning has focused mostly on single-

purpose tools in support of particular activities. A more desirable solution would be a general-

purpose system that can play a range of roles, so that teachers and students need only learn and

invest in one primary kind of classroom connectivity.

The purpose of our research was to identify characteristics of computational platforms that

not only enable the implementation of coordinated networked learning activities but inspire the

design of activities with high pedagogical value. This goal led us to a program of research where

we identified basic enabling requirements for platforms, created competing platforms that

satisfied these requirements, and then evaluated the pedagogical value of the activities that

emerged from these platforms.

1.1 Requirements

On the basis of a review of the CSCL literature, we identified the following technical

requirements for a platform for implementing collaborative learning activities:

• It must have latecomer tolerance, so that devices that join a session after it has started

can fully and gracefully catch up without having lost data.

• It must be robust across dropped connections, which will occur frequently (although the

main concern is not guaranteed transmission with a return receipt, but rather smooth

participation in the flow of an activity).

Coordinating Networked Learning 4

• It must also support disconnected mode gracefully, allowing students to work offline and

later submit their work in bulk (while catching up as well).

• The coordination layer must have a simple discovery paradigm for figuring out what

kinds of sessions are running and which ones a user might join.

We created two platforms that satisfied these basic requirements: an “API” platform based on

the tuple spaces architecture, and a “GUI” platform, which provided a general-purpose GUI

(Graphical User Interface) for activity design.

1.2 Evaluation Criteria

CSCL literature also led us to a list of high-value pedagogical qualities for comparing

collaborative learning activities resulting from our platforms:

• Positive interdependence and individual accountability. Every student should be

individually accountable for some portion of the task, and the overall goal requires all

students’ contributions (Johnson & Johnson, 1989).

• Role specialization. Students should be encouraged to focus deeply on one dimension of

teamwork at a time (Kagan, 1992).

• Even-odd tolerance. In realistic classroom settings, applications also must address the

possibility that “extra” students will be assigned to a group.

• Support for differential rates of completion. Some students work faster than others and

can be disruptive if they have nothing to do but wait.

A common theme in all the above qualities is the notion of distributed control in

collaborative learning activities. Interdependence and accountability suggest that students ought

Coordinating Networked Learning 5

to be making decisions that affect the progression of the activity. Role specialization emphasizes

a distribution of responsibilities. Even-odd tolerance is often characterized by the ability of

participants themselves to adjust to nonideal student counts, without centralized intervention,

say, by the instructor. Finally, support for differential rates is often predicated on the ability of

individuals to set the pace of their involvement in an activity.

In particular, we sought to measure the degree to which each platform inspired the above

qualities. This analysis is distinct from the question of whether a platform simply enabled a

programmer to create an activity with such qualities.

2. Test Cases

To evaluate the pedagogical value of artifacts derived from our two platforms, we needed test

cases in the form of classes of activities to implement. Prior work (DiGiano, Yarnall, Patton,

Roschelle, Tatar, et al., 2003) has promoted the value of identifying “whole activity” patterns in

collaborative learning activities and using these patterns as objects to think with during design.

We started by identifying 41 candidate whole activity patterns to serve as test cases. We then

ranked the candidates based on criteria such as importance to science and mathematics education

(the content focus of our efforts) and popularity among instructors and the CSCL research

community. The top four activity patterns, described below, became the focus of our testing.

1. Question Posing. Students propose questions for consideration relative to some topic, and

all students are involved in reviewing, ranking, and clustering candidate questions. The

result is a ranked set of important questions, with related items gathered in clusters.

2. Multiple Representations. A collection of artifacts representing learning phenomena is

divided up among students. Each student (or small group of students) is charged with

creating one of the preset representation types for the selected artifact.

Coordinating Networked Learning 6

3. Simultaneous Annotation. Students mark up the same content at the same time and then

compare and contrast results.

4. Image Mapping. The instructor poses an inquiry. Students respond by placing tokens on

an image. The instructor and students can then view and discuss the aggregation of

tokens.

3. The Tuples API Platform

A common strategy for supporting the implementation of educational software is to add a

pedagogically oriented layer to the generic application programming interface (API). This layer

can add utilities for managing a collection of activities, persistence of student data, and graphical

interface components specifically designed to support student inquiry. The layer can also be

useful for ensuring a consistent user experience across a family of related products. We call this

approach an “API” platform because educational activities are built on top of this layer by

programmers who have learned to leverage the added layer to rapidly construct high-quality

artifacts.

To evaluate how best to support the implementation of collaborative learning activities, one

of our two platforms took this familiar API approach. As shown in Figure 1, the lowest layer of

this platform is the Java programming language. On top of this is a “tuple space” library from

IBM for coordinating distributed processes and the Eclipse Project’s SWT GUI library

(http://eclipse.org). On top of that we wrote abstract classes to simplify the most common tuple

space operations and an activity management API, which provides, among other things, a simple

interface for participants to select from a list of available activities. Activities implemented on

this platform involve a server machine communicating with a network of Java-capable laptop or

desktop student devices.

Coordinating Networked Learning 7

Abstract Tuple Classes Activity Management API

Tuple Space Library (IBM TSpaces) GUI Library (Eclipse SWT)

Java

Figure 1. Layers of the API platform for implementing collaborative learning activities.

To appreciate the implementation issues that confront a programmer using this API platform

to make a collaborative learning activity, it is important to understand the tuple spaces

architecture. Tuple spaces were the conceptual base for the programming language Linda, a

language for coordinating parallel processes. The tuple spaces architecture is an example of the

“Blackboard Model” of computing, in which there is one central, public data store: the

Blackboard. Processes in the system observe this data store independently, watching for data that

they can act on, performing actions, and updating the Blackboard accordingly. Coordination in

such a system is not determined by a central mediator dictating when the various processes

should act; rather, the processes themselves make the determination, and the coordination is

emergent. This highly asynchronous model satisfied our technical requirements for robustness

across dropped connections and graceful support of disconnected mode. Latecomer tolerance

may also be realized insofar as the Blackboard serves as a cache of activity.

The tuple spaces architecture extends the Blackboard metaphor with a specific data structure,

the tuple; a shared memory structure, spaces; and an associated set of operations. Tuples are

ordered sets of fields. Fields are data elements that have a value and, depending on

implementation, may also have types and/or names. Spaces are simply “bags”—sets that can

contain duplicate elements—that contain tuples. Three core operations can be performed on a

space: write, read, and take. Write puts a tuple into a space, read reads the value of a tuple in a

Coordinating Networked Learning 8

space, and take removes a tuple from a space. Rather than using a query language to find tuples

for read and write operations, the tuple spaces architecture relies on pattern matching for

retrieval. A “template” tuple is provided as an argument in read and write operations, and tuples

matching that template are returned. This highly flexible data structure and simple query

mechanism are relatively easy to learn, compared with alternatives such as database tables and

the Structured Query Language.

3.1 Experience with the API Platform

Project team members were able to create instantiations of all four of our test case whole

activity patterns in-house:

• Question Posing. This involved writing a custom GUI for capturing questions, writing the

questions to a tuple space, and ranking them. A specialization of the platform’s abstract

tuple class was created to store questions. We used tuple space read operations to collect

all questions on a particular topic. This occupied a programmer’s time for several weeks.

• Multiple Representations. The existing ChemSense drawing tool from SRI

(http://chemsense.org) was repurposed with minimal effort to read and write diagrams

from and to a specialization of the abstract tuple class. We also needed to write a

specialized GUI widget for writing and taking names of molecules in a tuple space.

Identifying which molecules had what representations required invoking the read

operation on the space. Two programmers worked together over several weeks.

• Simultaneous Annotation. Students mark relevant lines in a document and share their

marks. This involved creating a custom document viewer with a check box beside each

line of text. A student’s particular subset of selected lines were stored in a specialization

of the abstract tuple class. Aggregating student selections required read operations on the

Coordinating Networked Learning 9

appropriate tuple space. Additional GUI code for browsing and viewing the aggregated

selections was created. A bar graph to the right of each line indicates the number of

students who highlighted the particular line, and the font size of more popular lines is

also increased to indicate frequency of selection. One programmer worked over several

weeks.

• Image Mapping. We created a custom GUI that could display an arbitrary image file and

interpret clicks as token placements. We needed to create a specialization of the abstract

tuple class to capture a student’s token positions. Token placement involved simply

writing this tuple to a particular tuple space. Aggregating tokens involved a tuple space

read operation that matched on a particular question posed by the instructor. The GUI

required further work to display aggregated tokens with or without attribution. One

programmer worked over several weeks.

At least two high-value pedagogical qualities appear in three of these four activities (Table

1). Most support positive interdependence and individual accountability; role specialization was

not explored.

Table 1.

Evaluation of Activities Generated by In-House Programmers Using the API and GUI Platforms

Activity pattern

Positive

interdependence and

individual

accountability

Role

specialization

Even-odd tolerance

Support for

differential rates of

completion

Question Posing API & GUI: Students API & GUI: Not API & GUI: Faster

Coordinating Networked Learning 10

accountable for

creating their own

questions; ranking

depends on peer

contributions

affected by student

count

students can

always add more

questions while

waiting for slower

ones

Multiple

Representations

API: Students

accountable for

selecting molecules

GUI: Students

accountable for

selecting equations

API & GUI: Task

completion depends

on aggregation of

everyone’s

representations

API & GUI:

Certain students

can be

responsible for

particular

representation

types

API & GUI: If

student count is not

evenly divisible by

representation

count, it’s OK if a

few do an extra

round

API & GUI: Faster

students can render

more

representations

while waiting for

slower ones

Simultaneous

Annotation

API: Students

contribute to an

annotation tapestry

GUI: Students

contribute to an

overall class rating

for items (based on

number of stars)

 API & GUI: Not

affected by student

count

API: Faster

students can do a

closer review in a

follow-up pass

while waiting for

slower ones

Image Mapping API: Students API & GUI: Not API & GUI: Faster

Coordinating Networked Learning 11

contribute to an

emergent pattern of

token placements

GUI: Students

contribute to an

emergent class

consensus on Homo

sapiens origin

affected by student

count

students likely to

influence token

placement by

slower students

In addition to implementing activities ourselves, we invited college-level student

programmers to create collaborative learning activities using the programmer-centric platform.

This was done in the context of a 3-week summer workshop at SRI and in one design course

during the school year at Virginia Tech. Through direct feedback from students and comments

from instructors, we learned that in the first year of instruction these students had considerable

difficulty implementing new activities. Some of these difficulties were technical; however, more

profoundly, the students had difficulty envisioning the desired activity and the relationships

among the activity, the pedagogy, and the design of the system. By arriving at the metaphor of

playground games for the activities, the professor was able to convey the relevant values to the

students, who in short order successfully built seven working prototypes. As important as that

development work was, it became clear that this approach to programming would not lead to

spontaneous, self-motivated, untrammeled development (Lin et al., 2006).

3.2 Reflections on the API Platform

We found that applications, such as ChemSense, that were already implemented on other

architectures with limited collaborative functionality could be quickly reimplemented by in-

Coordinating Networked Learning 12

house programmers and “collaboratized” in the tuple spaces framework. For these programmers,

our platform provided a powerful and comparatively simple path to adding collaborative

functionality to existing, well-understood, applications.

Results suggest that students needed more than simply an improved API. In particular,

success was achieved only after significant in-class discussion, debate, and coaching around the

nature, possibility, and desirability of highly distributed control.

4. The Group Scribbles GUI Platform

In contrast to the first platform, which was intended for programmers as implementers of

collaborative activities, our second platform, “Group Scribbles GUI,” is intended to be used by

instructors or non-technical curriculum developers. As illustrated in Figure 2, the GUI platform

shares the same foundation of Java and tuples as the API platform. However, the GUI platform

adds the Group Scribbles layer, a general-purpose graphical interface for the implementation and

execution of collaborative learning activities. It also makes the the lower-level SWT GUI library

is inaccessible to activity implementers. Group Scribbles-based activities involve a server

machine communicating with a network of student devices, ideally Tablet PCs with a stylus

interface (although we also support Pocket PC handhelds and mouse-based laptops or desktops).

Group Scribbles offers implementers, instructors and students what we believe is a powerful

metaphor for thinking about and realizing collaborative learning activities. This metaphor is

based on common physical artifacts from the classroom or office: adhesive notes, bulletin

boards, whiteboards, stickers, pens, and markers. The fundamental unit of expression in Group

Scribbles is the Scribble Sheet, a small square of virtual paper just large enough to express a

single thought or concept, whether via a quick sketch or a few words jotted down. Scribble

Coordinating Networked Learning 13

Sheets can be posted to Public Boards, where many sheets can be arranged to express ensemble

ideas, such as groupings, chronologies, or hierarchies.

Group Scribbles GUI

Abstract Tuple Classes Activity Management API

Tuple Space Library (IBM TSpaces) GUI Library (Eclipse SWT)

Java

Figure 2. Layers of the GUI platform for implementing collaborative learning activities.

To understand how one implements a collaborative learning activity in Group Scribbles, it is

important to understand what it is like to participate. As shown in Figure 3, each participant has a

Private Board on which to create and arrange Scribble Sheets. A given classroom instance of

Group Scribbles will have one or more named Public Boards accessible to all users. A typical

client view is subdivided to show the user’s Private Board in one region and a Public Board in

another.

Coordinating Networked Learning 14

Figure 3. The Group Scribbles GUI with a Private Board below and a Public Board above.

On the Private Board, a user finds a Scribble Pad, an endless source of fresh Scribble Sheets.

Users can pull sheets off the pad and write (or type) on them to generate new content. Figure 3

depicts a fully zoomed-in view of the Private Board. Users can zoom out several levels to help

arrange and maintain their Scribbles. Also available on the Private Board are Scribble Labels—

essentially smaller Scribble Sheets useful for annotation. When users are ready to publish a

Scribble Sheet, they simply drag it onto the Public Board. The new sheet then appears on the

Public Board of all participants; the frequency of screen updates depends on user configuration.

Coordinating Networked Learning 15

Figure 4. Ranking Task activity with an introductory physics class.

On a Public Board, any user is free to reposition any Scribble Sheet so that, while individual

thoughts are expressed within individual sheets, collective ideas are expressed over entire boards.

In this way, Scribbles can be sorted, grouped, or otherwise arranged to express interdependent

meaning. Scribble Sheets can also be taken from the Public Board (and later returned) and

brought onto a user’s Private Board (e.g., for activities calling for exchange or to take a token

representing a turn in a sequence).

Coordinating Networked Learning 16

The object of the activity depicted in Figure 4 (Chaudhury et. al., 2002; O’Kuma et. al.,

2000) was for students to determine the strength of the electrostatic force at the point P due to

seven different arrangements of charges. Students had to solve each scenario, recognize

equivalence of certain pairs of scenarios and arrange the sheets from left to right based on the

strength of the net force.

Because we built the GUI platform on top of the API platform, it shares all the same

technical qualifications of the latter: robustness across dropped connections and graceful support

of disconnected mode. Exactly how we implemented Group Scribbles on the API platform is

beyond scope of this paper, but it is worth noting that there is a close correspondence between

Group Scribbles GUI objects and tuples. For example, when a Scribble Sheet is dropped onto the

Public Board, a tuple describing the sheet is written to the tuple spaces server. Other clients with

the same Public Board in view will receive notification of the newly written Scribble Sheet tuple.

When they read this tuple, the new sheet will be rendered in their view of the Public Board.

The process of implementing a new Group Scribbles activity is not much different from the

end-user experience of participating in an activity. It involves placing sheets with seed content

on a Public Board and perhaps creating a background image that can contextualize the activity.

The board configuration is automatically saved indefinitely under an activity name on the tuple

server, so that at any time (a day, a week, or a year later) the instructor can ask students to open

the “pre-baked” Group Scribbles GUI through the system’s activity manager. The idea that the

instructor asks students to perform such a task on their Group Scribbles client is characteristic of

activities built on the GUI platform: students are often responsible for pulling content in a

distributed fashion because there are no built-in push mechanisms in Group Scribbles (beyond

Coordinating Networked Learning 17

Public Board sharing). We will show below how this reliance on “social mediation” actually has

pedagogical value.

4.1 Experience with the GUI Platform

As detailed below, we were able to create instantiations of all four of our test case whole

activity patterns in-house:

• Question Posing. The instructor relies on social mediation to get students to scribble a

question on a sheet and submit it to the Public Board for review. Students rank questions

by jointly arranging sheets on the Public Board, say, from left to right. By default, Group

Scribbles with its physical metaphor prevents more than one student from moving a sheet

simultaneously. No “pre-baked” content is necessary but an optional background image

for the Public Board can suggest bins for organizing questions into groups.

• Multiple Representations. We found that a matrix background image (Figure 5) is all that

is needed to organize a simple activity in which students render multiple representations

of a set of functions, such as an equation, a graph, and a tabular depiction of each. To

start the activity, the instructor populates the matrix with a set of tokens. Any student can

take a token and replace it with a rendering corresponding to that cell—e.g., a graph of a

periodic function.

• Simultaneous Annotation. We currently have limited experience with this whole activity

pattern. Given the size restrictions of sheets, the classic example of text markup is not

easily implemented. However, we have successfully conducted activities in which

students use Sheet Labels to attach star ratings to content on the Public Board.

• Image Mapping. Again, we found that a background image is all that is needed to

implement a simple mapping activity. For example, the instructor loads an image of the

Coordinating Networked Learning 18

globe onto the background of the Public Board and then uses social mediation to get

students to place a Sheet Label on the region associated with the emergence of Homo

sapiens around 200,000 B.C.

Figure 5. Matrix background image.

To gain more objective feedback on the GUI platform, we tested Group Scribbles in an

informal higher education setting—with undergraduate research assistants enrolled in a NASA

summer program. Activities were designed for short, 10- to 15-minute interactions, primarily to

test the various hardware platforms being investigated for wider classroom use. Question Posing

and Image Mapping activities were implemented with a view to whole-class aggregation and

discussion. Although no formal assessment of learning based on these sessions was conducted,

the students were able to learn to use the basic features of Group Scribbles within a few minutes

and successfully participate in instructor-led activities. An emergent feature of the use of the

system was back-channel “chats” via Scribble Sheets: even though sheets were being placed on

Coordinating Networked Learning 19

the Public Board for everyone to see, the content was clearly targeted at specific individuals. In

most cases, these individuals had existing social relationships, similar to classic note-passing in

secondary classrooms. Formal classroom testing with students enrolled in credit-bearing courses

is currently being conducted at a partner university. Preliminary feedback reinforces the view

that GS is an easy to learn system and Figure 4. is a direct outcome of a successful learning

activity conducted by one of the authors in an introductory physics class for non-science majors.

4.2 Reflections on the GUI Platform

At least two of the desired pedagogical qualities appeared in two of the four activities. As

with the API platform, the most prevalent quality was “positive interdependence and individual

accountability”; the least prevalent was role specialization.

However, none of the experiences in implementing collaborative learning activities with the

GUI platform required programming. With no programmatic control over the design of activity,

one might expect that there would be limited opportunity to ensure interactions with high

pedagogical value. Yet, our evaluation of the activities showed the presence of almost all the

desirable qualities of the much more customized activities built on the API platform. We

attribute this success to design features of the Group Scribbles GUI that naturally affords high-

quality collaborative activities:

• (Re)arrangable. Scribble Sheets can be positioned and repositioned to convey meaning.

This feature allows students to jointly negotiate the relationship between artifacts, such as

the ranking of questions in the Question Posing activity by simple drag operations. The

result is an environment where any student’s response can be subject to challenge, thus

emphasizing interdependence.

Coordinating Networked Learning 20

• Unique. As simulated physical artifacts, Scribble Sheets cannot be in more than one place

at a time. This attribute naturally supports activities where certain artifacts are

manipulated sequentially, such as a particular equation in the function representations

activity that gets rendered in one form and then another. Ultimately, this feature

simplifies the coordination of artifacts when students are playing specialized roles or

trying to avoid duplicate work.

• Metainformatic. As described in the simultaneous annotation and image mapping

activities, Scribble Sheets and Labels can mark up images or other Scribble Sheets. This

feature also contributes to a sense of positive interdependence.

• Modeless. Unlike with products of the API platform, our experience is that Group

Scribbles (perhaps because of its lack of programmability!) encourages activities in

which students are free to choose from a wide variety of operations rather than being

constrained to a particular subactivity. The ability for students to be working

simultaneously on different aspects of an activity or for one student to use surplus time to

revisit an aspect helps support differential rates of completion and even-odd tolerance.

With our GUI platform, the activity implementer sacrifices the possibility of a user

experience that is highly tailored to the task at hand. For example, it is not currently feasible to

add scaffolding for students to generate valid ball and stick diagrams in chemistry. On the other

hand, we have been pleasantly surprised by the wide variety of activities we can support with

reasonable fidelity, which we attribute to two other Group Scribbles qualities:

• Representationally neutral. Students can use digital ink on Scribble Sheets to easily

capture diagrams, drawings, mathematical and scientific notation, and text. Different

sizes afford different kinds of activities.

Coordinating Networked Learning 21

• Background imagery. Our experience is that a simple background image, such as of the

globe or a Cartesian coordinate system, can provide critical pedagogical context without

requiring programming.

Finally, it is worth noting that instructors and students may actually benefit from the fact that

Group Scribbles-based activities have a common—albeit somewhat generic—look and feel.

Anecdotally, we hear complaints from instructors who must juggle (and subject their students to

juggling) many different classroom tools. The flexibility of the Group Scribbles GUI for

collaborative learning activities challenges the need for such disparate applications and hints at a

future when instructors and students may need to invest in only a small number of core tools that

they can grow with over time.

5. Conclusions

Apple’s introduction of HyperCard in the 1980s ushered in a wave of inventive and useful

educational applications, all created by teachers, students, and other nonprogrammers. Until now,

technology-enhanced classroom collaboration and coordination activities have been, like

educational applications in pre-HyperCard days, the sole domain of dedicated programming

teams, greatly limiting the scope of experimentation and creative effort. Extending the analogy, it

may be useful to consider what could be learned from the HyperCard experience that might be

applicable to the programmer cognition issue around distributed control: were similar issues

neatly sidestepped by HyperCard through appealing directly to end users as programmers? We

argue that HyperCard not only provided programming tools to teachers but sidestepped a

programmer cognition issue relevant at the time: the conceptual shift to user-event-driven

programming.

Coordinating Networked Learning 22

Though the graphical user interface, and, indeed, hypertext were introduced by SRI

researchers in 1968 (Engelbart, 1968), until the time of the introduction of HyperCard, the

dominant conception of programming was highly shaped by the terminal interface (DOS

command line, telnet, etc.) and an interaction style dominated by computer control in both

outputs and inputs (“input statements” are a dead giveaway of this mind-set). In that style, the

computer program determines what information is demanded (word used advisedly) of the user

and when input is allowed. Programs were normally structured as a branching tree of requests for

specific inputs and displays of resulting outputs. The very notion seemed ridiculous that one

could create novel and useful applications with only

• buttons to push;

• text fields to type into or click on;

• screens (“cards”) containing buttons, graphics, and text fields; and

• the capacity to set up automatic “links” from one card to another (Neuburg, 1994).

But the aspect uniting these elements, and perhaps the most significant payload, was a

programming paradigm that situated control primarily in the hands of the user.

Though it is clearly too early to predict with confidence, there is reason to believe that Group

Scribbles, with its small set of generic features and emphasis on graphical (and hence machine

uninterpretable) content, all united by a distributed control paradigm, could pave the way for a

broader understanding of the benefits and challenges of programming in this model.

Coordinating Networked Learning 23

References

Abrahamson, A. L. (1999). Teaching with classroom communication system: What it involves

and why it works. Retrieved February 20, 2004, from

http://www.bedu.com/Publications/PueblaFinal2.html

DiGiano, C., Yarnall, L., Patton, C., Roschelle, J., Tatar, D., & Manley, M. (2003). Conceptual

tools for planning for the wireless classroom. Journal of Computer Assisted Learning,

19(3), 284-297.

Chaudhury, S.R., Rodriguez, W.J., Cooper-Pabis, B.J., and Lee, K., "Using Ranking Tasks to

Introduce Scientific Visualization in the Lecture", presentation at the AAPT National

Meeting, Philadelphia, 2002

Engelbart, D., English, W; “A Research Center for Augmenting Human Intellect,” AFIPS

Conference Proceedings of the 1968 Fall Joint Computer Conference, San Francisco, CA,

December 1968, Vol. 33, pp. 395-410 (AUGMENT,3954,). Johnson, D. W., & Johnson,

R. T. (1989). Cooperation and competition: Theory and research. Edina, MN: Interaction

Book Company.

Kagan, S. (1992). Cooperative learning. San Juan Capistrano, CA: Resources for Teachers.

Lin, S., Tatar, D., Harrison, S., Roschelle, J., & Patton, C. (2006, August). Learning when less is

more: “Bootstrapping” undergraduate programmers as coordination designers.

Presented in Exploratory Discussions at the Participatory Design Conference 2006,

Trento, Italy.

Neuburg, M. (1994). HyperCard 2.2: The great becomes greater. TidBITS, 213. Retrieved from

http://db.tidbits.com/article/04075

O’Kuma, T., Maloney, D. and Hieggelke, C., Ranking Task Exercises in Physics, Prentice Hall,

2000

http://db.tidbits.com/article/04075

Coordinating Networked Learning 24

	Abstract
	Classrooms equipped with wirelessly networked tablets and handhelds can engage students in powerful collaborative learning activities that are otherwise impractical or impossible. However, the system must fulfill certain technological and pedagogical requirements such as tolerance for latecomers, supporting disconnected mode gracefully, robustness across dropped connections, promotion of both positive interdependence and individual accountability, and accommodation of differential rates of task completion. Two approaches to making a Tuple Space-based computer architecture for connectivity into an inviting environment for the generation and creation of novel coordinated activities were attempted. One approach made the technological “bones” of the system very clear but assumed user vision of the complex goals and settings of real education. The more satisfactory approach made clear how Tuple Spaces matches the complex goals and settings of real education, but backgrounded technical complexity. This approach provides users with a system, Group Scribbles, which may inspire a wide range of uses. 1. Introduction
	1.1 Requirements
	1.2 Evaluation Criteria
	2. Test Cases
	3. The Tuples API Platform
	3.1 Experience with the API Platform
	3.2 Reflections on the API Platform

	4. The Group Scribbles GUI Platform
	4.1 Experience with the GUI Platform
	4.2 Reflections on the GUI Platform

	5. Conclusions

	But the aspect uniting these elements, and perhaps the most significant payload, was a programming paradigm that situated control primarily in the hands of the user.
	Though it is clearly too early to predict with confidence, there is reason to believe that Group Scribbles, with its small set of generic features and emphasis on graphical (and hence machine uninterpretable) content, all united by a distributed control paradigm, could pave the way for a broader understanding of the benefits and challenges of programming in this model.
	References
	Abrahamson, A. L. (1999). Teaching with classroom communication system: What it involves and why it works. Retrieved February 20, 2004, from http://www.bedu.com/Publications/PueblaFinal2.html
	Lin, S., Tatar, D., Harrison, S., Roschelle, J., & Patton, C. (2006, August). Learning when less is more: “Bootstrapping” undergraduate programmers as coordination designers. Presented in Exploratory Discussions at the Participatory Design Conference 2006, Trento, Italy.

